

Applying Uncertainty Quantification to Multiphase Flow CFDs

Charles Tong¹

Center for Applied Scientific Computing (CASC)
Lawrence Livermore National Laboratory

Aytekin Gel²

ALPEMI Consulting, LLC /
National Energy Technology Laboratory

Acknowlegment: The CCSI Technical Team

1 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344

2 This work was performed in support of the National Energy Technology Laboratory's ongoing Research in advanced multiphase numerical simulation of multiphase flows under the RES contract DE-FE0004000

Presentation Outline

- Brief Introduction to Uncertainty Quantification & Analysis
- Introduction to UQ Toolkit, PSUADE
- Preliminary Results for Demonstration of Non-intrusive UQ Analysis for MFIX Simulations:
 - Gasification
 - DES Fluidized Bed
- Summary

Let's use an example to illustrate the need for UQ

Variable	Min	Max	Units
Lean Loading	0.15	0.33	mol CO ₂ /mol MEA
Lean Solvent Feed Temperature	110	150	°F
Rich Solvent Feed Temperature	205	214	°F
Absorber Packing Height	15	40	ft
Absorber Intercooler Temperature Change	-18	0	°F
Regenerator Packing Height	10	30	ft
Regenerator Condenser Pressure	20	24	psia
Regenerator Condenser Temperature	110	150	°F
Compressor Intercooler 1 Temperature	110	140	°F
Compressor Intercooler 2 Temperature	110	140	°F

Objective: minimize the levelized cost of electricity while keeping carbon capture at above 90%

Optimization results using surrogate models

Optimal solution:

Lean solution = 2.66e-01
Abs packing height = 2.78e+01
Regen packing height = 1.95e+01
Abs Intercooler delta T= -1.11e+01
Lean Solvent Feed T = 1.29e+02
Rich Solvent Feed T = 2.14e+02
Regen Condenser P = 2.00e+01
Regen Condenser T = 1.29e+02

Which gives 90% CO2 capture and LCOE ~ 113

However, it is known that some of the parameters in the model are uncertain: for example, reaction parameters

Scope: MEA equilibrium reactions

$$H_2O + MEAH^+ \leftrightarrow H_3O + MEA$$
 (Reaction 1-2)
 $CO_2 + OH^- \leftrightarrow HCO_3^-$ (Reaction 2-2)
 $H_2O + HCO_3^- \leftrightarrow H_3O^+ + CO_3^{-2}$ (Reaction 3-2)
 $MEACOO^- + H_2O \leftrightarrow MEA + HCO_3^-$ (Reaction 4-2)
 $2H_2O \leftrightarrow H_3O^+ + HO^-$ (Reaction 5-2)

$$\ln K_{eq} = A + \frac{B}{T} + C \ln T + DT$$

Reaction	A	В	C	D
1-2	0.7996	-8094.81	0.0	-0.007484
2-2	98.566	1353.8	-14.3043	0.0
3-2	216.049	-12431.7	-35.4819	0.0
4-2	1.282562	-3456.179	0.0	0.0
5-2	132.899	-13445.9	-22.4773	0.0

Other sources of uncertainties: mass transfer, equilibrium model, Flue gas composition, boundary conditions, ...

As a result of parametric uncertainties, we have an uncertainty distribution for the CO2 capture %

The distribution may be unrealistic due to loose prescription of the uncertainty bounds, adding data into the analysis, for example, gives

Questions we may ask about these uncertainties

- What is the uncertainty of the CO2 capture % as a result of these uncertainties?
- What other parameters in the systems are uncertain?
- Which parameters have the most effect on the output uncertainties?
- If I have more data, how much do they help in narrowing the output uncertainties?
- As a result of uncertainties, what is the probability that the CO2 capture falls below 90%?
- I am using an approximate process model, what is the effect of approximation on the accuracy of the solution?
- How do uncertainties affect the system design?

Welcome to the world of UQ

What is uncertainty quantification? One possible definition

Uncertainty quantification is the

- identification (where the uncertainties are),
 - Physics model, boundary conditions, data, ...
- characterization (what form they are),
 - Parametric (bounds, PDF, beliefs), model form
- propagation (how they evolve, forward/inverse),
- analysis (what are the impacts, quantitative), and
 - Sensitivity analysis, risk analysis, ...
- reduction

of uncertainties (all?) in simulation models.

How do we put these into practice? → a UQ process

- 1. Define the objective of the UQ study (e.g. quantify risk)
- 2. Problem specification (model, assumptions, QOI, data)
- 3. Preliminary parameter identification and selection
- 4. Characterize parameter uncertainties (literature, expert)
- 5. Integrate data into models (Data Fusion Methodology)
- 6. Parameter screening (Dimension Reduction Methodology)
- 7. Build surrogates (Response Surface Methodology)
- 8. Uncertainty/Sensitivity analysis (Global SA methodology)
- 9. Sensitivity/Risk analysis and predictability assessment
- 10. Expert reviews, documentation

Identifying relevant sources of uncertainties is a very important first step in a UQ study

Mathematical model/simulation code

Proper characterization of uncertainties is key to accurate propagation of uncertainties

- Aleatoric (known probability distributions)
- Epistemic
 - unknown probability distributions
 - use intervals or belief functions
 - missing physics (will give systematic errors)
- Mixed aleatoric/epistemic
 - known pdfs, unknown means and/or standard deviations
- Model form uncertainties
 - many possible equations to represent the submodels
 - each sub-model may have its own aleatoric/epistemic uncertainties
- Errors (considered as uncertainties?)
 - discretization errors, roundoff errors, algorithmic errors

Different approaches to propagate uncertainties

Intrusive approach

hybrid approach for multi-physics (one scenario)

Uncertainty propagation can be challenging for complex physics models due to

- Models may be expensive to evaluate (hours on many processors)
- Nonlinear (may be discontinuous) input-output relationships
- High-dimensionality of the uncertain parameters (10's -100's)
- Complex correlation between uncertain parameters
- Mostly epistemic uncertainties (maybe mixed aleatoric/epistemic)
- Model form (structural) uncertainties
- Different types of data at different physics modules/subsystems
- Data scarcity
- Model operating at different regime than experiments (extrapolation)
- Uncertainties mixed with numerical errors in operator splitting
- Unknown unknowns (unknown processes, unknown couplings)

PSUADE (A Problem Solving environment of Uncertainty Analysis and Design Exploration) is a software library of UQ tools

Methodologies/methods: (arbitrary input inequality constraints)

- several dimension reduction methods
- classical uncertainty analysis methods
- many response surface methods (including adaptive)
- several global sensitivity analysis methods
- some basic risk assessment methods
- numerical/stochastic optimization methods
- hypothesis testing, principal component analysis

A job execution environment (to support automation)

- synchronous and asynchronous modes
- dependency and chain modes (suitable for psub/moab)
- multiple single-processor, multiple multiple-processor (intrusive)

An interactive user interface

many ways of visualizing uncertainties

Preliminary Results for Demonstration of Non-intrusive Uncertainty Quantification Study with MFIX Simulations:

- Sample Problem # 1: DES Fluidized Bed
- Sample Problem # 2: Gasification

How Uncertainty Quantification Can Be Used in Our Community?

- What impact do parameter/model uncertainties have on model outputs? Establish confidence levels & quantitative quality assessment in simulation results.
- Which parameters cause the most output uncertainties? [Sensitivity Analysis]
- How do output uncertainties affect input uncertainties? [Inverse UQ]
- How to use observed data to calibrate system parameters? [Calibration]
- In view of uncertainty, how to quantify risk?

Non-intrusive Uncertainty Quantification

- No need to modify simulation models: "black boxes"
- No need for analysis of the mathematical structures in the model
- May require large sample size for sufficient accuracy

MFIX, Open Source Multiphase Flow Code

Mass conservation for phase m (m=g for gas and s for solids)

$$\frac{\partial}{\partial t} (\varepsilon_m \rho_m) + \nabla \cdot (\varepsilon_m \rho_m \vec{\mathbf{v}}_m) = \sum_{l=1}^{N_m} R_{ml}$$

R&D100

Momentum conservation

$$\frac{\partial}{\partial t} \left(\mathbf{f}_{m} \rho_{m} \vec{\mathbf{v}}_{m} \right) + \nabla \cdot \left(\mathbf{f}_{m} \rho_{m} \vec{\mathbf{v}}_{m} \vec{\mathbf{v}}_{m} \right) = \nabla \cdot \overline{\overline{S}}_{m} + \varepsilon_{m} \rho_{m} \vec{\mathbf{g}} + \sum_{n} \vec{I}_{mn}$$

$$\frac{3}{2}\varepsilon_{m}\rho_{m}\left(\frac{\partial\Theta_{m}}{\partial t} + \vec{\mathbf{v}}_{m}\cdot\nabla\Theta_{m}\right) = \nabla\cdot\vec{q}_{\Theta_{m}} + \overline{S}_{m}:\nabla\ \vec{\mathbf{v}}_{m} - \varepsilon_{m}\rho_{m}J_{m} + \ \prod_{\Theta_{m}}$$

Technology Transfer Award 2008 for

C₃M

- Syamlal et al. "MFIX Documentation, Theory Guide," DOE/METC-94/1004, NTIS/DE94000087 (1993)
- Benyahia et al. "Summary of MFIX Equations 2005-4", From URL http://www.mfix.org/documentation/MfixEquations2005-4-3.pdf, July 2007.

Energy conservation

$$\varepsilon_{m} \rho_{m} C_{pm} \left(\frac{\partial T_{m}}{\partial t} + \vec{\mathbf{v}}_{m} \cdot \nabla T_{m} \right) = -\nabla \cdot \vec{q}_{m} + \sum \gamma_{mn} \left(\mathbf{q}_{m} - T_{m} \right) - \Delta H_{rm}$$

 $\frac{\partial}{\partial t} \left(\varepsilon_m \rho_m X_{ml} \right) + \nabla \cdot \left(\varepsilon_m \rho_m X_{ml} \vec{\mathbf{v}}_m \right) = R_{ml}$

Demonstration Problem for Parametric Non-Intrusive UQ: Gasification

Problem Setup and Properties:

Solids: Rosebud coal with $D_p = 0.01$ cm, $\rho_p = 2.85$ g/cm³

Coal flow rate: 1 g/s, Recycled char: 100 g/s

Gas: Air flow rate: 2.76 g/s

Geometric dimensions = 10 cm x 200 cm

Grid Resolution = (10 x 200) cells **(2–D simulation)**

Governing Physics & Models: Multiphase flow hydrodynamics, heat transfer, chemical reactions.

Numerical Scheme: Spatial discr. : Upwind

Temporal discr.: 1st order

Test problem provided by Dr.Tingwen Li

Demonstration Problem for Parametric Non-Intrusive UQ: Gasification (con't)

Objective: Determine the effect of uncertainty in reactions rates on the species mass composition at the outlet of the gasifier.

Uncertainty Quantification Study Properties:

Input parameters with Uncertainty (min-max range):

- (1) Reaction rate constant for CO2 gasification
 - C(6): 0.1 10,100,1000.0 [Uniform distribution]
- (2) Reaction rate constant for devolatilization
 - C(8): 0.1 10,100,1000.0 [Uniform distribution]

Response Variables:

- (1) CO species mass fraction at the outlet
- (2) CH4 species mass fraction at the outlet
- (3) H2 species mass fraction at the outlet

Recycle UQ Toolbox/Engine: PSUADE from LLNL

Sampling Method = LPTAU, **Sample Size** = 100, 1024

Computational Cost to simulate 40 seconds

Per sample: 1 to 1.5 hrs wallclock on single core

Demonstration Problem for Parametric UQ Study: Gasification

Sample size = 1024

Variables with uncertainty:

lower – upper bound

(1)Reaction rate constant for CO2 gasification, C(6): 0.1 - 100

(2) Reaction rate constant for devolatilization, C(8): 0.1 - 100

Histogram of Output 1 : CO mass fraction (Xg_CO)

Sample mean

= 1.7295e-01

Sample std dev

= 5.0652e-03

Response Surface for CO mass fraction (Xg_CO): Cubic splines based method (MARS)

Response Surface Analysis (Xg_CO):

What happened? Let's examine Xg_CO more closely.

Many outliers on the edge

Alter the input range

Response Surface Analysis (on Xg_CO): on small range

Sensitivity Analysis for CO mass fraction:

- Using the response surface for Xg_CO, we compute the global sensitivity indices for both input variables.
- Assume uniform distributions for input uncertainties.
- The sample mean is 0.173
- The sample standard deviation is 0.005
- For this specific example problem % of variance from each input is determined as:
 - Input # 1: Reaction rate const. for CO2 gasification ~ 10%
 - Input # 2: Reaction rate constant for devolatilization ~ 90%

Summary

- UQ activities recently started within Multiphase Flow Group, work in progress.
- Several challenges to perform UQ in multiphase reacting flows:
 - Many uncertain parameters exist,
 - Highly nonlinear,
 - Transient behavior,
 - Computationally intensive simulations,
 - No assurance all samples will converge
- The trade-off between sample size and non-intrusive UQ analysis accuracy due to computational cost per sample.

Thank you!

Questions?

APPENDIX

Does the Sample Size Matter? A Comparison.

Sampling Method: LPTAU

Variables with uncertainty:

lower – upper bound

(1)Reaction rate constant for CO2 gasification, C(6): 0.1 - 1000

(2) Reaction rate constant for devolatilization, C(8): 0.1 - 1000

1000

Does the Sampling Method Matter? A Comparison.

Sample size = 256

Variables with uncertainty:

lower – upper bound

(1)Reaction rate constant for CO2 gasification, C(6): 0.1 - 1000

(2) Reaction rate constant for devolatilization, C(8): 0.1 - 1000

Monte Carlo Sampling (MC)

Quasi Random Sequence Generator Sampling (LPTAU)

Does the Sampling Method Matter? A Comparison. (cont d)

Sample size = 256

Variables with uncertainty:

lower – upper bound

(1)Reaction rate constant for CO2 gasification, C(6): 0.1 - 1000

(2) Reaction rate constant for devolatilization, C(8): 0.1 - 1000

Quasi Random Sequence Generator Sampling (LPTAU)

Latin Hypercube Sampling (LH)

Does the Sample Size Matter? A Comparison. (cont'd)

Sampling Method: LPTAU

Variables with uncertainty:

lower – upper bound

(1)Reaction rate constant for CO2 gasification, C(6): 0.1 - 1000

(2) Reaction rate constant for devolatilization, C(8): 0.1 - 1000

Sample Problem # 2 for Parametric UQ Study: Gasification

Sample size = 1024

Variables with uncertainty:

lower – upper bound

(1)Reaction rate constant for CO2 gasification, C(6): 0.1 - 100

(2) Reaction rate constant for devolatilization, C(8): 0.1 - 100

Sample Problem # 1 for Parametric Non-Intrusive UQ Study: Central jet fluidized bed

Objective: Determine the effect of uncertainty in coefficients of restitution and friction on bed expansion and bubbling behavior.

Problem Setup and Properties:

Solids: $D_p = 0.4$ cm, $\rho_p = 2.7$ g/cm³ Initial solid volume fraction: 0.4 up to height of 20 cm 5 parcels per cell

Gas: Air at standard conditions
Fluidization velocity = 4200 cm/s with no slip BC at walls

Geometric dimensions = $(15 \times 90 \times 0.4) \text{ cm}^3$ **Grid Resolution** = $(15 \times 45) \text{ cells}$ (2-D simulation)

Governing Physics & Models: Multiphase flow hydrodynamics with DEM, Drag model: Wen &Yu/Ergun,

Numerical Scheme: $\Delta t_{max} = 1.E-03$., First order upwind

Sample Problem # 1 for Parametric Non-Intrusive UQ Study: Cenţral jet fluidized bed (cont'd)

Objective: Determine the effect of uncertainty in coefficients of restitution and friction on bed expansion and bubbling behavior.

Uncertainty Quantification Study Properties:

Input parameters with Uncertainty (min-max range):

(1)Particle-particle coefficient of restitution

 $e_n = 0.6 - 1.0$ [Uniform distribution]

(2) Particle-wall coefficient of restitution

 $e_n = 0.6 - 1.0$ [Uniform distribution]

Response Variables:

(1) Average bed expansion height (cm?)

(2) Average pressure drop (??)

UQ Toolbox/Engine: PSUADE from LLNL

Sampling Method = LPTAU, Sample Size = 24, 100

Computational Cost to simulate 20 seconds

Per sample: 2 to 2.5 hrs wallclock on single core

Does Sample Size Matter?

Quasi Random Sequence Generator Sampling (LPTAU)

Variables with uncertainty:

lower – upper bound

(1)Particle-particle Restitution Coeff., DES_EN_INPUT : 0.6 - 1.0

(2) Particle-wall Restitution Coeff., DES_EN_WALL_INPUT: 0.6 - 1.0

Sample size = 24

Sample size = 100

Sample size = 256

Comparison of Fitness Quality of Response Surface for Output 1: Avg. Bed Height for different sample size runs:

Response
Surface
Method:
Multivariate
Adaptive
Regression
Splines
(MARS)

Fluidized Bed Data Analysis (Avg_h)

response surface analysis using cubic splines gives

- max prediction uncertainty ~ 0.2 (<2%)
- but it is large relative to the output range (0.7)

Comparing data and response surface (Avg_h)

If R0 and R1 are uncertain, the output is also uncertain

R0, R1 ~ Normal(0.8, 0.1) (give more weight to center)

What happened? Let's examine Avg_dp more closely.

Fluidized Bed Data Analysis (Avg_dP)

response surface analysis using cubic splines gives

Errors ~ output range → not acceptable

What happened? Let's examine Avg_dp more closely.

