Progress Toward Inclusion of Collision Effects in MP-PIC

Peter O'Rourke, CFD d'OR Software and Dale Snider, CPFD Software

NETL 2011 Multiphase Flow Workshop Pittsburgh, PA August 16-18, 2011 Background: Original Multi-Phase Particle-in-Cell (MP-PIC) Method

- Andrews and O'Rourke, Int. J. Multiphase Flow 22, 379-402 (1996). (one dimension)
- Snider, J. Comput. Phys. 170, 523-549 (2001). (multi-dimensions)

 Solve transport equation for particle distribution function f(x_i,v_i,m,...,t)

Solve transport equation for particle distribution function f(x_i,v_i,m,...,t)
 (e.g. f(x_i,v_i,m,t)=particle number density in 7-dimensional particle space at time t)

- Solve transport equation for particle distribution function f(x_i,v_i,m,...,t)

 (e.g. f(x_i,v_i,m,t)=particle number density in 7-dimensional particle space at time t)
- Similar to Boltzmann Equation except
 - More independent variables
 - No collision terms on right-hand side (original MP-PIC)
 - More complicated acceleration

Original MP-PIC Particle Acceleration

$$\frac{dv_i}{dt} = A_i^{orig} = D(u_i - v_i) - \frac{1}{\rho_p} \frac{\partial p}{\partial x_i} + g_i - \frac{1}{\rho_p \theta_p} \frac{\partial \tau(\theta_p)}{\partial x_i}$$

where particle contact stress $\tau(\theta_p)$ given by

$$\tau(\theta_p) = \frac{P_p \theta_p^\beta}{\theta_{cp} - \theta_p}$$

- Only direct particle-particle interaction is through contact stress $\tau(\theta_p)$
- No collision terms

Original MP-PIC Calculation of Impinging Particle Jets

CPED Tracers rad	MP-PIC, d=150-300 micron, u=20 m/s, Feed vol frac=0.1, no collision	0.0000000e+00
-140 -131.875		
- 123.75		
-115.625 -107.5		
-99.375 -91.25		
-83.125 -75		

Inclusion of Collision Effects

- O'Rourke, et al., Chem. Eng. Sci. 64, 1784-1797 (2009).
- O'Rourke and Snider, Chem. Eng. Sci. 65, 6014-6028 (2010).
- O'Rourke and Snider, submitted to Chem. Eng. Sci. (2011).

Calculation of Impinging Particle Jets with Collisions

CPED Tracers rad	MP-PIC, d=150-300 micron, u=20 m/s, Feed vol frac=0.1, res=0.999	0.0000000e+00
-123.75 -115.625		
-107.5		
-99.375 -91.25		
-83.125 -75		

Inclusion of Collision Effects

- No collision terms on right-hand side of particle distribution function equation
- Add collision acceleration terms

$$\frac{dv_i}{dt} = A_i^{orig} + A_i^{coll}$$

Collision Acceleration

$$A_{i}^{coll} = \frac{v_{i} - v_{i}}{2\tau_{G}} + \sum_{k} v_{k,i}' \delta(t - t_{k}) + \frac{v_{i} - v_{i}}{2\tau_{D}}$$

- First two terms
 - represent relaxation to isotropic Gaussian distribution on timescale τ_{G}
 - have no net effect on granular temperature
- Third term
 - represents damping due to inelastic collisions on timescale τ_{D}
 - gives rise to decay in granular temperature

Collision Acceleration

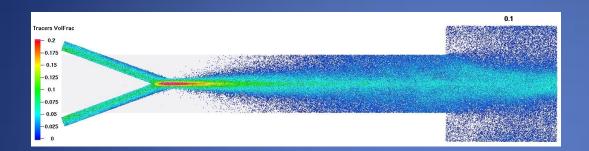
$$A_{i}^{coll} = \frac{v_{i} - v_{i}}{2\tau_{G}} + \sum_{k} v_{k,i}' \delta(t - t_{k}) + \frac{v_{i} - v_{i}}{2\tau_{D}}$$

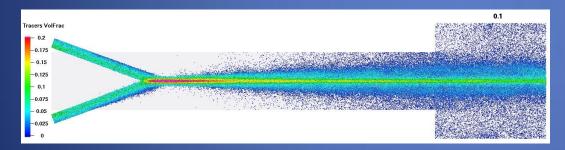
- t_k = time of collision k
- Probability/time = $P(t_k) = 1/\tau_G$
- v'_{k,i} = random velocity induced by collision k
- v'_{k,i} chosen from isotopic Gaussian with variance σ²(m)

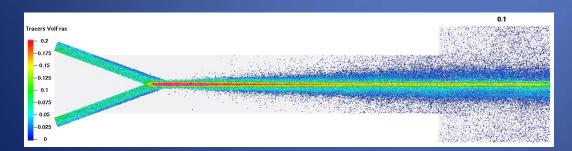
Collision Acceleration

$$A_{i}^{coll} = \frac{v_{i} - v_{i}}{2\tau_{G}} + \sum_{k} v_{k,i}' \delta(t - t_{k}) + \frac{v_{i} - v_{i}}{2\tau_{D}}$$

- Analogy with multi-component gas flow
- $\sigma^2(m) = M\sigma^2/m$
- M = local average particle mass
- σ² = local mass-averaged velocity variance of particle velocity distribution

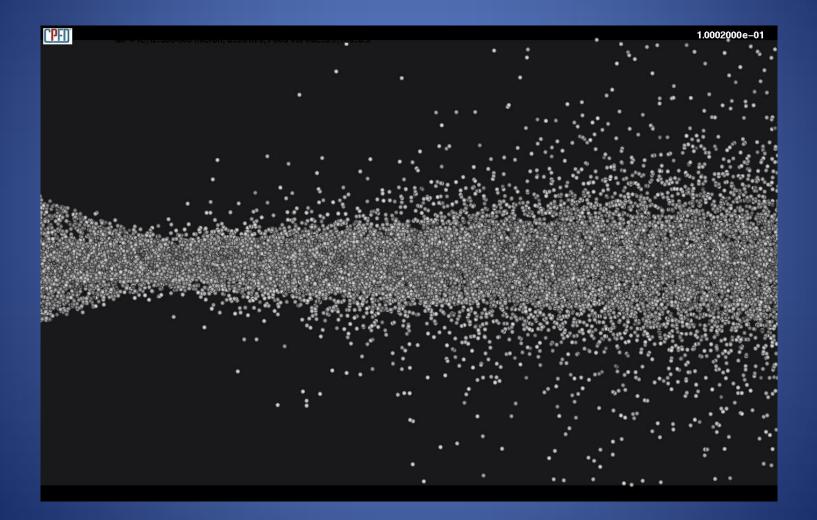

• A_i^{coll} not directly approximated because it is possible that $\tau_G << \delta t$


- A_i^{coll} not directly approximated because it is possible that $\tau_G << \delta t$
- Derive and approximate "All-Time-Scale" (ATS) equations with only one random velocity and position change per particle each δt


- A_i^{coll} not directly approximated because it is possible that $\tau_G << \delta t$
- Derive and approximate "All-Time-Scale" (ATS) equations with only one random velocity and position change per particle each δt
- Correlated velocity and position changes chosen from ATS equations

- A_i^{coll} not directly approximated because it is possible that $\tau_G << \delta t$
- Derive and approximate "All-Time-Scale" (ATS) equations with only one random velocity and position change per particle each δt
- Correlated velocity and position changes chosen from ATS equations
- Computational parcels undergo random walks

Effect of Varying Coefficient of Restitution e_p



e_p = 0.999

e_p = 0.9

e_p = 0.8

Close-up of Impingement Region

Collision Model Future Work

- Collision model V & V
- Assess importance of collisions in practical applications with Barracuda[™] code (monitor important parameter Dτ_G)
- Other collision effects