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Carbon Capture Challenge 
• The traditional pathway from discovery to 

commercialization of energy technologies can be 
quite long, i.e., ~ 2-3 decades 

• President’s plan requires that barriers to the 
widespread, safe, and cost-effective deployment 
of CCUS be overcome within 10 years 

• To help realize the President’s objectives, new 
approaches are needed for taking carbon capture 
concepts from lab to power plant, quickly, and at 
low cost and risk 

• CCSI will accelerate the development of carbon 
capture technology, from discovery through 
deployment, with the help of science-based 
simulations  
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outline 

• overview of high-fidelity sorbent modeling 
• Bayesian calibration applied to sorbent equilibrium 

models 
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the sorbent 

• mesoporous silica forms the 
substrate 

• substrate particles  
agglomerates of micron-sized 
mesoporous particles 

• mesopores impregnated with 
an active material, such as 
polyethyleneimine (PEI) 

K Kajihara, et al., Bull Chem Soc Jpn, 82 (2009) 1470. 
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the sorbent: dry TGA behavior 

(a)-(b) Sorbent NETL-196C, ~44.1 wt-% PEI, Dry atmosphere.  Sorbent synthesis: McMahan 
Gray, NETL; Sorbent characterization: Daniel Fauth, NETL. 
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anhydrous model 

• two-step formation of carbamic acid: 

• three modes of mass transport: 
gas phase bulk 
gas phase Knudsen 
solid state (zwitterion-mediated hopping) 
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anhydrous model 

(left) sample calculated output of the sorbent model showing diffusion effects (right) sensitivity 
analysis highlighting the importance of zwitterion stability to sorbent working capacity 
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• Bayes’ theorem enables the incorporation of prior information in 
model-based parameter estimates. 

Bayesian methods in parameter estimation 

• If model parameters relate to physical quantities, prior information is 
available through ab initio calculations. 

DS Mebane,  KS Bhat, JD Kress, et al., in prep. 
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• The error in the form of the model must also be accounted for. 
• A Gaussian process generates a stochastic set of curves adhering to 

certain general properties. 
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• Bayes’ theorem enables the incorporation of prior information in 
model-based parameter estimates. 

Bayesian methods in parameter estimation 

• The error in the form of the model must also be accounted for. 

MC Kennedy and A O’Hagan, J Royal Stat Soc B, 63 (2001) 425. 
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Bayesian methods in parameter estimation 

posterior 
distributions (left) 
without and (right) 
with informative 

priors 

DS Mebane,  KS Bhat, JD Kress, et al., in prep. 
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Bayesian methods in parameter estimation 

posterior 
distributions (left) 
without and (right) 
with informative 

priors 

DS Mebane,  KS Bhat, JD Kress, et al., in prep. 
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Bayesian methods in parameter estimation 

(left) prior 
distribution for 

adsorption 
enthalpy, and 

(right) posterior 
distribution 

DS Mebane,  KS Bhat, JD Kress, et al., in prep. 
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Bayesian methods in parameter estimation 

(left) prior 
distribution for 

adsorption 
enthalpy, and 

(right) posterior 
distribution 

DS Mebane,  KS Bhat, JD Kress, et al., in prep. 
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Bayesian methods in parameter estimation 

(left) conditioned 
model + 

discrepancy 
predictions, and 

(right) model 
predictions, with 
95% confidence 

bounds 

DS Mebane,  KS Bhat, JD Kress, et al., in prep. 
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Bayesian methods in parameter estimation 

(left) normalized 
discrepancy for 

uniform priors with 
95% bounds, and 
(right) normalized 
discrepancy for 

informative priors, 
4% CO2 

DS Mebane,  KS Bhat, JD Kress, et al., in prep. 
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Bayesian methods in parameter estimation 

(left) normalized 
discrepancy for 

uniform priors with 
95% bounds, and 
(right) normalized 
discrepancy for 

informative priors, 
100% CO2 

DS Mebane,  KS Bhat, JD Kress, et al., in prep. 
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• Ab initio calculations can be used in along with a valid model form 
discrepancy in a Bayesian framework to influence the experimental 
calibration of engineering-useful models of complex chemical 
systems. 

• A conditioned model form discrepancy enables the direct use of 
experimental information in scale-up through a model-plus-
discrepancy approach, providing penalties for interpolation and 
extrapolation that become smaller as models improve. 

• Work is underway to demonstrate the effects of model form 
discrepancy in upscaling of a simple kinetic model for CO2 capture 
through to the process scale. 

conclusions / future work 
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 This presentation was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference herein to any specific commercial 
product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United States Government or 
any agency thereof. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof. 
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