

NATIONAL ENERGY TECHNOLOGY LABORATORY

Coal and Biomass Blends Devolatilization in Inert and Oxidizing Gaseous Environments

Ping Wang, Sheila Hedges and Chris Guenther

Presentation Outline

- CO₂ capture technologies
- Objectives
- Materials and experimental designs
- Thermal behavior and reactivity: coal + wood in inert and oxidizing gaseous environments
- Summary

CO₂ Capture Technologies

Control of carbon emissions - key DOE-FE goal

- Oxy-fuel combustion
 - Future Gen 2.0

Chemical looping

Source: Cost and Performance Baseline for Fossil Energy Power Plants study, Volume 1: Bituminous Coal and Natural Gas to Electricity; NETL, May 2007.

- Pre-combustion (IGCC)
 - Wabash River (1995)

Post combustion

- Polk Power Station (1996)
- Kemper County IGCC facility

Biomass in Coal Power Generation

Reduce CO₂ emission - major drive

Biomass

- Carbon neutral
- Renewable/alternative fuel
- **Major Biomass Types**
 - Wood residues
 - Energy crops on CRP land
 - Agriculture residues
 - Municipal solid waste

Tests and Demonstrations

- Co-firing:
 - Replace a portion of the coal (≤ 20%)
 with biomass in an existing power plant
 - Considered technically successful
 - Reduced CO_2 , SO_2 and NO_x emissions
- Co-gasification

Wood

Switchgrass

Oxyfuel and IGCC Technology Development Focus on: Process stimulation for flexible fuels including coals and blending of coal and biomass

http://www.encapco2.org/technoOxvFBT.htm

http://www.kbr.com/Newsroom/Publications/Technical-Papers/KBRs-Transport-Gasifier-TRIG-An-Advanced-Gasification-Technology-for-SNG-Production-From-Low-Rank-Coals.pdf

Objectives

- To investigate the impact of inert and oxidative gaseous environments on thermal behavior and reactivity of coal, biomass and blends
- To study the effect of biomass percentage on coal/biomass blends reactivity and thermal behavior

Materials and Experiment designs

Experimental measurement of reactivity

- Weigh solid fuels
- Analyze generated gas

Test matrix

Samples	N ₂	CO ₂	10% O ₂ in CO ₂
PRB sub-bituminous	Х	Х	Х
Yellow pine wood pellet	Х	Х	Х
10 wt % wood in blends	Х	Х	Х
20 wt % wood in blends	Х	Х	Х

Test methods:

- TGA non-isothermal at heating rate 20°C/min
- Temperature profile
 - 25 to 100°C and hold for 20 min.
 - 100 to 1000°C and hold for 5 min.
- Test in triplicate (quadruplicate when O₂ present)

Coal and Wood Properties

	Proximate analysis (% dry basis)						
	volatile matter fixed carbon ash						
PRB coal	40.83	50.34	8.83				
Wood pellet	85.19	13.40	1.42				

	U	HHV (Btu/lb)				
	С	Н	N	S	O (diff)	(dr <u>y ba</u> sis)
PRB coal	67.24	4.23	1.53	0.38	17.79	11,439
Wood pellet	53.20	6.24	0.12	0.02	39.00	8,839

Ash mineral analysis (oxides and ignited % wt.)										
	SiO ₂	A_2O_3	Fe ₂ O ₃	TiO ₂	CaO	P_2O_5	MgO	Na ₂ O	K ₂ O	SO ₃
Coal	38.71	16.00	5.52	1.08	19.24	0.96	4.68	1.22	0.75	10.69
Wood	37.80	13.80	4.15	0.77	21.20	1.74	6.12	1.07	4.06	5.50

8

Weight Loss (TG) and Weight Loss Rate (DTG) of Wood vs. Temperature in N₂, CO₂ and 10% O₂/CO₂

NATIONAL ENERGY TECHNOLOGY LABORATORY

9

Different Thermal Behaviors of Coal and Wood

and the second second

10

Coal and Wood Blends in N₂

DTG curve

11

Two reaction regions by temperature

Coal and Wood Blends in CO₂

DTG curve

Three reaction regions by temperature

Coal and Wood Blends in 10% O₂ in CO₂ DTG curve Two reaction regions by temperature

13

Final Residues of Coal/Biomass Blends in Different Process Gases up to 1000°C

Calculated blends: $W_{r, mixture} = R_{wood} * W_{r, wood} + (1 - R_{wood}) * W_{r, coal}$

Weight Loss of Coal/Biomass Blends in Different Process Gases from 100 to 415°C

15

TG Curves of Coal and Wood Blends in CO_2 and $10\% O_2/CO_2$

16

Kinetic Parameters for Pyrolysis

- Multistep reactions divided by temperature
- Global first order reaction in each step

Arrhenius format	Gas	Sample	Ε	Α
$d\alpha \qquad -\frac{E}{E} c(x)$			(kJ/mole)	(s ⁻¹)
$\frac{dt}{dt} = Ae^{-RT}f(\alpha)$	N ₂	PRB coal	28.4	5.55E+02
		10 wt % wood in blend	38.3	5.79E+03
$f(\alpha) = (1 - \alpha)^n$		20 wt % wood in blend	51.4	1.15E+05
	CO ₂	Wood pellet	87.9	3.81E+08
$\ln \frac{d\alpha/dt}{d\alpha} = lnA - \frac{E}{R} \frac{1}{\pi}$ as n=1		PRB coal	28.7	2.23E+02
$(1-\alpha)$ RT		10 wt % wood in blend	43.2	8.05E+03
where $\alpha = (m - m)/(m - m)$		20 wt % wood in blend	48.5	2.93E+04
where, $\alpha = (m_0 m_1)/(m_{0-}m_1)$		Wood pellet	88.9	3.49E+08
	10% O ₂ /CO ₂	PRB coal	51.1	4.7E+4
		10 wt % wood in blend	51.1	4.7E+4
		20 wt % wood in blend	51.1	4.7E+4
		Wood pellet	101.3	5.2E+09

Summary

- Different thermal events of pyrolysis, combustion and gasification take place in different temperature ranges in inert and oxidizing gas environment.
- Total weight loss of PRB coal, pine wood and blends at 1000°C are higher in CO₂ and O₂/CO₂ than in N₂ due to char gasification and char combustion in addition to devolatilization.
- Devolatilization/pyrolysis rate is higher in O₂ gas environment than in inert gas environment.
- Wood pyrolysis take places at lower temperature and higher rate with higher volatile yield and short reaction time compared to coal.
- In the lower temperature range, coal/wood blends have higher weight loss and weight loss rate compared to coal alone.
- No significantly interactions between coal and biomass were observed from thermal decomposition weight loss data.

Thank You

Questions?