
The Effect of Neighboring Particles on 

the Dynamics of a Particle Settling in a 

Viscous Fluid 

 

Zhi-Gang Feng 

Students: Samuel Musong, Gregory Sloan, Maria Anderson, 

and Eric Stewart 

Univ. of Texas at San Antonio 

 

Supported by: DOE-NETL (Grant #:DE-NT0008064), and NSF 

 

 



Multiscale Modeling for Particlulate Flows 



DNS simulation method: Proteus* 

• Fluid velocity and pressure fields 

– Lattice-Boltzmann method or finite difference method based Navier-

Stokes fluid solver;  fixed regular grid. 

• Particle-fluid interactions 

– Immersed boundary method; moving boundary nodes 

• Particle-particle interactions 

– Soft-sphere collision scheme  

– Hybrid repulsive-force/lubrication scheme 

• Particle dynamics 

– Newton’s equations of motion (translational and rotational motions) 

 

*Feng, Z.-G. and E. E. Michaelides, “Proteus: A direct forcing method in the simulations of particulate flow,” J. Comput. 

Phys., 202: 20-51 (2005). 



Validations of Proteus 
• Sedimentation of a spherical particle in a viscous fluid 

– Experiment measurement using PIV by ten Cate et al.* 

 

 

 

 

 

 

• Fluidization of 3000 glass beads**  

* A ten Cate, C. H. Nieuwstad, J. J. Derksen, and H. E. A. van den Akker(2002), “Particle imaging velocimetry experiments 

and lattice-Boltzmann simulations on a single sphere settling under gravity,” Phys. Fluids, 14: 4012-4025 . 

** Obuseh, C., Feng, Z.-G., and Paudel, 

B.D. (2012), “An experimental study of 

fluidization of bidisperse particulate 

flows,” Journal of Dispersion Science 

Technology . 



Some simulation results by the 

Proteus 



Slip velocity of solid particles at a solid 

wall 

10,000 spherical particles in a jet fluidized bed 

Time-space averaged velocity 



Comparable study between DNS and TFM 
Sedimentation of light particles in an enclosure 

Top: DNS  (2016 particles); Bottom: TFM simulation. 



Particles Clustering  

Nanoparticles/adhesive particles agglomerations 



A particle settling in a solid-liquid suspension 

• Consider the settling of a heavy particle in a 

solid-liquid suspension that contains a large 

number of neutral particles in comparable size. 

• Particle settling velocity has two limits: 

–     , solid fraction =0, no surrounding particles; 

– 0, solid fraction=1. 

• Effect of the surrounding particles to the 

dynamics of the settling particle w.r.t. 

– the size of the suspended  neighboring particles 

– the solid fraction of the suspension flow 
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Physical and simulation parameters 

• Physical properties (*) 

– Settling particle diameter d=15mm,density ρp=1500kg/m3; 

– Fluid viscosity 0.058 kg/m.s, density=960 kg/m3. 

• Simulation parameters: 

– δx=d/16;  δt=2.5x10-4 s; 

– Flow domain: regular grid 96x96x480;  

– Particle: 789 surface nodes for one particle 

– Periodic boundary conditions 

– At zero solid fraction,                        ;   flow Reynolds number ~68. 

 

*A ten Cate, C. H. Nieuwstad, J. J. Derksen, and H. E. A. van den Akker(2002), “Particle imaging velocimetry experiments 

and lattice-Boltzmann simulations on a single sphere settling under gravity,” Phys. Fluids, 14: 4012-4025 . 
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Effect of the size of neighboring particles 

• Consider three cases at the same solid volume 

fraction ϕ=10% 

 

 

 

 

• Question: 

– Which case the heavy particle falls the fastest?  

 

Case No. Diameter of neighboring 
particles   

Number of neighboring 
particles 

1 1d 200 

2 0.625d 819 

3 0.375d 3793 



Settling of a heavy particle in suspension 

flows with different size of particles  

       Case 1: N=200     case 2: N=819    case 3: N=3793 



Settling of a particle in suspension flows with 

different size of particles   

        case 1                      case 2                case 3 

Pressure contours on the centered x-y plane (z=0)  



Settling velocity of the heavy particle 

 

 

 

 

 

 

 
              Resistance: drag force + collision force 



Vertical position of the heavy particle 

 

 

 

 

 

 
 

Almost the same slope in z-t graph.  The mean settling velocity=slope=0.21 m/s. 

 



Horizontal positions of the heavy particle 

 

 

 

 

 

 
 

• The migration in the horizontal directions increases with the size of 

neighboring particles  



Effect of solid fractions 

• The neutral particles are chosen to be the same size as the 

settling particle. 

• 10 cases are studied. 

 Case No. Number of 
surrounding particles 

Volume solid fraction 

1 0 0 

2 100 0.049 

3 200 0.097 

4 250 0.121 

5 300 0.145 

6 350 0.170 

7 400 0.194 

8 450 0.218 

9 500 0.242 

10 630 0.305 



Initial distributions of particles at eight 

different solid fractions  

 



Settling velocity at different solid 

fractions 

 

 

 

 

 

 

 
• Higher solid fraction leads to the increased drag force and the number of 

collisions 



Vertical position of the settling particle 

at different solid fractions 

After a brief unsteady transition at the beginning, the slope in z-t graph is 

nearly a const for each case. 



Mean terminal velocity 

• Mean terminal velocity: 

 

 

 

• Correlation:  

 

Solid 

fraction 

Mean terminal velocity  

Simulation (m/s)  V(ϕ)/V(0) 

0 0.265 1 

0.049 0.230 0.89 

0.097 0.210 0.81 

0.121 0.200 0.74 

0.145 0.190 0.70 

0.170 0.174 0.64 

0.194 0.165 0.61 

0.218 0.155 0.58 

0.242 0.150 0.56 

0.305 0.130 0.48 
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Mixture theory 

• Effective density and viscosity of solid-liquid suspension: 

                       (Batchelor*) 

 

         or          (Thomas**) 

 

Force balance: 

 

 

Empirical drag law: 

 

Only unknown:  
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*G.K. Bachelor, 1967, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge  

** Thomas, D., Transport characteristics of suspensions: VIII. A note on the viscosity of Newtonian suspensions of 

uniform spherical particles, J. Colloid Sci., 20, 267–277, 1965. 
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Theory and simulation results 

Possible cause: the mixture theory doesn’t account for the particle-particle 

collisions which are critical when particles have comparable sizes. 



Future Work 

  

– Different types of neighboring particles 
• Non-neutral 

• Cohesive  

• Polydisperse 

• Non-spherical 

– Different types of flows 
• Flows of different Reynolds numbers 

• Flows in fluidization beds 

– From a single particle to a large number of particles  

 


