The Effect of Neighboring Particles on the Dynamics of a Particle Settling in a Viscous Fluid

Zhi-Gang Feng

Students: Samuel Musong, Gregory Sloan, Maria Anderson, and Eric Stewart

Univ. of Texas at San Antonio

Supported by: DOE-NETL (Grant #:DE-NT0008064), and NSF

Multiscale Modeling for Particlulate Flows

Resolved Discrete Particle (Direct Numerical Simulation) Model Unresolved Discrete Particle (Discrete Element) Model

Two-Fluid (Continuum) Model

Larger geometry

DNS simulation method: Proteus*

- Fluid velocity and pressure fields
 - Lattice-Boltzmann method or finite difference method based Navier-Stokes fluid solver; fixed regular grid.
- Particle-fluid interactions
 - Immersed boundary method; moving boundary nodes
- Particle-particle interactions
 - Soft-sphere collision scheme
 - Hybrid repulsive-force/lubrication scheme
- Particle dynamics
 - Newton's equations of motion (translational and rotational motions)

Validations of *Proteus*

- Sedimentation of a spherical particle in a viscous fluid
 - Experiment measurement using PIV by ten Cate et al.*

Fluidization of 3000 glass beads**

** Obuseh, C., Feng, Z.-G., and Paudel, B.D. (2012), "An experimental study of fluidization of bidisperse particulate flows," *Journal of Dispersion Science Technology*.

^{*} A ten Cate, C. H. Nieuwstad, J. J. Derksen, and H. E. A. van den Akker(2002), "Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity," *Phys. Fluids*, **14**: 4012-4025.

Some simulation results by the *Proteus*

Slip velocity of solid particles at a solid wall

Time-space averaged velocity

10,000 spherical particles in a jet fluidized bed

Comparable study between DNS and TFM

Sedimentation of light particles in an enclosure

Top: DNS (2016 particles); Bottom: TFM simulation.

Particles Clustering

Nanoparticles/adhesive particles agglomerations

A particle settling in a solid-liquid suspension

- Consider the settling of a heavy particle in a solid-liquid suspension that contains a large number of **neutral** particles in comparable size.
- Particle settling velocity has two limits:
 - $-U_{\infty}$, solid fraction =0, no surrounding particles;
 - 0, solid fraction=1.
- Effect of the surrounding particles to the dynamics of the settling particle w.r.t.
 - the size of the suspended neighboring particles
 - the solid fraction of the suspension flow

Physical and simulation parameters

- Physical properties (*)
 - Settling particle diameter d=15mm, density $\rho_p=1500$ kg/m3;
 - Fluid viscosity 0.058 kg/m.s, density=960 kg/m3.
- Simulation parameters:
 - $-\delta x = d/16$; $\delta t = 2.5 \times 10^{-4} s$;
 - Flow domain: regular grid 96x96x480;
 - Particle: 789 surface nodes for one particle
 - Periodic boundary conditions
 - At zero solid fraction, $U_{\infty} = 0.27 m/s$; flow Reynolds number ~68.

*A ten Cate, C. H. Nieuwstad, J. J. Derksen, and H. E. A. van den Akker(2002), "Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity," *Phys. Fluids*, **14**: 4012-4025.

Effect of the size of neighboring particles

• Consider three cases at the same solid volume fraction $\phi = 10\%$

Case No.	Diameter of neighboring particles	Number of neighboring particles
1	1d	200
2	0.625d	819
3	0.375d	3793

- Question:
 - Which case the heavy particle falls the fastest?

Settling of a heavy particle in suspension flows with different size of particles

Case 1: N=200 case 2: N=819 case 3: N=3793

Settling of a particle in suspension flows with different size of particles

Pressure contours on the centered x-y plane (z=0)

Settling velocity of the heavy particle

Resistance: drag force + collision force

Vertical position of the heavy particle

Almost the same slope in *z-t* graph. The mean settling velocity=slope=0.21 m/s.

Horizontal positions of the heavy particle

• The migration in the horizontal directions increases with the size of neighboring particles

Effect of solid fractions

- The neutral particles are chosen to be the same size as the settling particle.
- 10 cases are studied.

Case No.	Number of surrounding particles	Volume solid fraction
1	0	0
2	100	0.049
3	200	0.097
4	250	0.121
5	300	0.145
6	350	0.170
7	400	0.194
8	450	0.218
9	500	0.242
10	630	0.305

Initial distributions of particles at eight different solid fractions

Settling velocity at different solid fractions

 Higher solid fraction leads to the increased drag force and the number of collisions

Vertical position of the settling particle at different solid fractions

After a brief unsteady transition at the beginning, the slope in z-t graph is nearly a const for each case.

Mean terminal velocity

• Mean terminal velocity:

$$\frac{dz}{v_z} = \frac{dz}{dt} = slope in z - t graph.$$

Correlation:

$$\frac{V(\phi)}{V(0)} = (1 - \phi)^{2.25}, \quad (0 \le \phi \le 0.3)$$

Solid	Mean terminal velocity		
fraction	Simulation (m/s)	V(φ)/V(0)	
0	0.265	1	
0.049	0.230	0.89	
0.097	0.210	0.81	
0.121	0.200	0.74	
0.145	0.190	0.70	
0.170	0.174	0.64	
0.194	0.165	0.61	
0.218	0.155	0.58	
0.242	0.150	0.56	
0.305	0.130	0.48	

Mixture theory

• Effective density and viscosity of solid-liquid suspension:

$$\rho_m = \rho_f$$
, $\mu_m \approx \mu_f \left(1 + 2.5\phi + 5.2\phi^2 + ... \right)$ (Batchelor*)

or $\mu_m \approx \mu_f \left(1 + 2.5\phi + 10\phi^2 + ... \right)$ (Thomas**)

Force balance:

$$C_d(\phi)\frac{1}{2}\rho_m V_t^2(\phi)\frac{\pi d^2}{4} = (\rho_p - \rho_f)\frac{1}{6}\pi d^3$$

Empirical drag law:
$$C_d(\phi) = (0.63 + \frac{4.8}{\sqrt{\text{Re}(\phi)}})^2$$

Only unknown: $V_t(\phi)$

*G.K. Bachelor, 1967, *An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge*** Thomas, D., Transport characteristics of suspensions: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles, *J. Colloid Sci.*, 20, 267–277, 1965.

Theory and simulation results

Possible cause: the mixture theory doesn't account for the particle-particle collisions which are critical when particles have comparable sizes.

Future Work

- Different types of neighboring particles
 - Non-neutral
 - Cohesive
 - Polydisperse
 - Non-spherical
- Different types of flows
 - Flows of different Reynolds numbers
 - Flows in fluidization beds
- From a single particle to a large number of particles