Quantifying Uncertainty In Computational Knowledge Engineering Rapidly # Adam Donato, Professor Ranga Pitchumani, and Dr. Mehrdad Shahnam Advanced Materials and Technologies Laboratory Department of Mechanical Engineering Virginia Tech Blacksburg, Virginia 24061-0238 -adonato@vt.edu • pitchu@vt.edu • http://www.me.vt.edu/amtl- Uncertain input # **Motivation for Uncertainty Quantification** - Multiphase systems operate in an environment of uncertainty - This uncertainty exists in both the parameters governing the system and in the process behavior - The interactive effect of uncertainty leads to variability in the system performance or the process outcomes - Uncertainty quantification, through stochastic computational modeling and analysis, is an important tool for investigating #### **Current Methodologies** - Conventional methods seek to mimic physical processes - O Monte Carlo methods randomly select inputs from the input distributions - O Stratified methods (such as the Latin Hypercube method) seek to reduce the number of experiments, but still generate a representative sample - O Both methods are VERY computationally intensive #### **Monte Carlo Sampling** Range of variable x #### **Latin Hypercube Sampling** Range of variable x #### **Overview of QUICKER** | QUICKER (Quantifying Uncertainty In Computational Knowledge Engineering Rapidly) QUICKER is a new methodology that is intended to be used instead of conventional sampling methods such as Lathin Hypercube Sampling, Monte Carlo Sampling, Quasi-Monte Carlo Sampling, etc. Since sampling, effectively running computational simulations, is the most time consuming aspect of Uncertainty Quantification, the significant reduction in computational costs from using QUICKER make Uncertainty Quantification far more affordable | |--| | QUICKER is orders of magnitude faster than conventional sampling O Through the use of QUICKER, it is typical to see computational time reductions in excess of 99% of the time required for conventional methods | | QUICKER does not sacrifice accuracy O Typical RMS differences between QUICKER and conventional methodologies are | QUICKER is noninvasive and transparent less than 8% - O QUICKER can be implemented without modifying the simulation source code - The QUICKER methodology does not require esoteric math or complicated algorithms #### **Identifying key points to sample** #### Only a small number of key points are necessary - For a monotonic system with a Gaussian input, it is necessary to select only a few input points in order to completely define the output distribution - These points are chosen at the mean and equal standard deviations Advanced Materials and Technologies Laboratory ## Using a lognormal output distribution #### A lognormal distribution is versatile - A lognormal distribution can be used to represent symmetric or positive skewness - Therefore, lognormal distributions will be used in QUICKER ## **Accounting for constant offset** Gaussian input distribution **Offset** monotonic system Unimodal output distribution #### Certain systems have a constant offset The lognormal distribution assumes that f(x=0)=0, and therefore it is necessary to account for any systematic offsets by taking an additional data point #### **Accounting for negative skewness** - **Certain outputs have a negative skewness** - The lognormal distribution has a positive skewness, and in order to account for this, the plot needs to be "flipped" about the maximum point - Note that the function reverses the relative magnitude of the inputs ## **Sampling within QUICKER** For a system with two input distributions, three points are selected on each input distribution # The minimums and means are simulated, and then an orthogonal array is used to combine the extremes | | | | y_2 | | | |-----|-----|---------------------------|------------------------|---------------------------|------------| | 1.4 | | | $\mathbf{\hat{O}}_{1}$ | | | | 1.2 | | | | | | | 1.0 | | | <u> </u> | l | | | 0.8 | | 4 | | | | | 0.6 | | | | | | | 0.4 | y | 71 ┟ | | $ \mid_{\mathbb{L}} y$ | ' 2 | | 0.2 | , c | $\mathbf{L}_{\mathbf{L}}$ | | |) | | - | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | | Simul.# | x | у | |---------|-------|-------| | min | min | min | | 1 | x_2 | y_2 | | 2 | x_1 | y_1 | | 3 | x_1 | y_3 | | 4 | x_3 | y_1 | | 5 | x_3 | y_3 | ## A specific example of QUICKER # The Rosenbrock function is a typical test case for optimization routines $$f(x,y) = 100 * (y - x^2)^2 + (1 - x)^2$$ $\mu_x = 0$, $\sigma_x = 0.67$ $\mu_y = 1$, $\sigma_y = 0.67$ | Input distr. | $\mu - 3\sigma$ | μ | $\mu + 3\sigma$ | |--------------|-----------------|---|-----------------| | x | -2.01 | 0 | 2.01 | | у | -1.01 | 1 | 3.01 | #### Population | Simul.# | x | у | |---------|-------|-------| | min | 1 | 1 | | 1 | 0 | 1 | | 2 | -2.01 | -1.01 | | 3 | -2.01 | 3.01 | | 4 | 2.01 | -1.01 | | 5 | 2.01 | 3.01 | Advanced Materials and Technologies Laboratory ## **Composite representation of uniform** $U = length \ of \ uniform \ range$ $U_0 = lower \ bound$ - Epistemic uncertainty is typically represented as a uniform distribution - A combination of Gaussian distributions can be used to represent a uniform distribution - Note that the Gaussian distribution is scaled depending on the uniform distribution ## Results of composite uniform #### *Uniform input distribution*: [1, 2] $$f(x) = x^3 + 1$$ - To a point, composite distributions can provide a more accurate prediction - Functions of only one variable are typically the hardest to represent with uniform composite distirbutions - Note that the improvement from 2X to 3X composite distribution is negligible #### 3dCfb MFIX scenario with 1X uniform LHS computation time: 125.56 hours QUICKER computation time: 4.52 hours Computational time savings of *96.4%* Measuring porosity at a specified location #### **Ahmadi MFIX scenario with 1X uniform** #### 3dCfb MFIX scenario with 2X uniform # Measuring porosity at a specified location ## Results of a blind study #### Results of a blind chemical kinetics study - Using the QUICKER methodology, a set of samples points were provided to Dr. Aytekin Gel to run through his simulation - The developers of QUICKER had no prior knowledge of the specifics of this kinetics model MC computation time: 1.52 hours QUICKER computation time: 0.0019 hours Computational time savings of 99.9% #### **Acknowledgements** # Support from the U.S. Department of Energy, National Energy Technology Laboratory (NETL), is gratefully acknowledged