Quantifying Uncertainty In Computational Knowledge Engineering Rapidly

Adam Donato, Professor Ranga Pitchumani, and Dr. Mehrdad Shahnam

Advanced Materials and Technologies Laboratory
Department of Mechanical Engineering
Virginia Tech
Blacksburg, Virginia 24061-0238

-adonato@vt.edu • pitchu@vt.edu • http://www.me.vt.edu/amtl-

Uncertain input

Motivation for Uncertainty Quantification

- Multiphase systems operate in an environment of uncertainty
 - This uncertainty exists in both the parameters governing the system and in the process behavior
 - The interactive effect of uncertainty leads to variability in the system performance or the process outcomes
 - Uncertainty quantification, through stochastic computational modeling and analysis, is an important tool for investigating

Current Methodologies

- Conventional methods seek to mimic physical processes
 - O Monte Carlo methods randomly select inputs from the input distributions
 - O Stratified methods (such as the Latin Hypercube method) seek to reduce the number of experiments, but still generate a representative sample
 - O Both methods are VERY computationally intensive

Monte Carlo Sampling

Range of variable x

Latin Hypercube Sampling

Range of variable x

Overview of QUICKER

 QUICKER (Quantifying Uncertainty In Computational Knowledge Engineering Rapidly) QUICKER is a new methodology that is intended to be used instead of conventional sampling methods such as Lathin Hypercube Sampling, Monte Carlo Sampling, Quasi-Monte Carlo Sampling, etc. Since sampling, effectively running computational simulations, is the most time consuming aspect of Uncertainty Quantification, the significant reduction in computational costs from using QUICKER make Uncertainty Quantification far more affordable
QUICKER is orders of magnitude faster than conventional sampling O Through the use of QUICKER, it is typical to see computational time reductions in excess of 99% of the time required for conventional methods
QUICKER does not sacrifice accuracy O Typical RMS differences between QUICKER and conventional methodologies are

QUICKER is noninvasive and transparent

less than 8%

- O QUICKER can be implemented without modifying the simulation source code
- The QUICKER methodology does not require esoteric math or complicated algorithms

Identifying key points to sample

Only a small number of key points are necessary

- For a monotonic system with a Gaussian input, it is necessary to select only a few input points in order to completely define the output distribution
- These points are chosen at the mean and equal standard deviations

Advanced Materials and Technologies Laboratory

Using a lognormal output distribution

A lognormal distribution is versatile

- A lognormal distribution can be used to represent symmetric or positive skewness
- Therefore, lognormal distributions will be used in QUICKER

Accounting for constant offset

Gaussian input distribution

Offset monotonic system

Unimodal output distribution

Certain systems have a constant offset

The lognormal distribution assumes that f(x=0)=0, and therefore it is necessary to account for any systematic offsets by taking an additional data point

Accounting for negative skewness

- **Certain outputs have a negative skewness**
 - The lognormal distribution has a positive skewness, and in order to account for this, the plot needs to be "flipped" about the maximum point
 - Note that the function reverses the relative magnitude of the inputs

Sampling within QUICKER

For a system with two input distributions, three points are selected on each input distribution

The minimums and means are simulated, and then an orthogonal array is used to combine the extremes

			y_2		
1.4			$\mathbf{\hat{O}}_{1}$		
1.2					
1.0			<u> </u>	l	
0.8		4			
0.6					
0.4	y	71 ┟		$ \mid_{\mathbb{L}} y$	' 2
0.2	, c	$\mathbf{L}_{\mathbf{L}}$)
-	2.0	2.5	3.0	3.5	4.0

Simul.#	x	у
min	min	min
1	x_2	y_2
2	x_1	y_1
3	x_1	y_3
4	x_3	y_1
5	x_3	y_3

A specific example of QUICKER

The Rosenbrock function is a typical test case for optimization routines

$$f(x,y) = 100 * (y - x^2)^2 + (1 - x)^2$$

 $\mu_x = 0$, $\sigma_x = 0.67$
 $\mu_y = 1$, $\sigma_y = 0.67$

Input distr.	$\mu - 3\sigma$	μ	$\mu + 3\sigma$
x	-2.01	0	2.01
у	-1.01	1	3.01

Population

Simul.#	x	у
min	1	1
1	0	1
2	-2.01	-1.01
3	-2.01	3.01
4	2.01	-1.01
5	2.01	3.01

Advanced Materials and Technologies Laboratory

Composite representation of uniform

 $U = length \ of \ uniform \ range$ $U_0 = lower \ bound$

- Epistemic uncertainty is typically represented as a uniform distribution
 - A combination of Gaussian distributions can be used to represent a uniform distribution
 - Note that the Gaussian distribution is scaled depending on the uniform distribution

Results of composite uniform

Uniform input distribution: [1, 2]

$$f(x) = x^3 + 1$$

- To a point, composite distributions can provide a more accurate prediction
 - Functions of only one variable are typically the hardest to represent with uniform composite distirbutions
 - Note that the improvement from 2X to 3X composite distribution is negligible

3dCfb MFIX scenario with 1X uniform

LHS computation time: 125.56 hours
QUICKER computation time: 4.52 hours
Computational time savings of *96.4%*

Measuring porosity at a specified location

Ahmadi MFIX scenario with 1X uniform

3dCfb MFIX scenario with 2X uniform

Measuring porosity at a specified location

Results of a blind study

Results of a blind chemical kinetics study

- Using the QUICKER methodology, a set of samples points were provided to Dr. Aytekin Gel to run through his simulation
- The developers of QUICKER had no prior knowledge of the specifics of this kinetics model

MC computation time: 1.52 hours

QUICKER computation time: 0.0019 hours
Computational time savings of 99.9%

Acknowledgements

Support from the U.S. Department of Energy, National Energy Technology Laboratory (NETL), is gratefully acknowledged

