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Motivation for Uncertainty Quantification 
 

 Multiphase systems operate in an environment of uncertainty 
 This uncertainty exists in both the parameters governing the 

system and in the process behavior 
 The interactive effect of uncertainty leads to variability in the 

system performance or the process outcomes 
 Uncertainty quantification, through stochastic computational 

modeling and analysis, is an important tool for investigating 
these effects 
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Current Methodologies 
 

 Conventional methods seek to mimic physical processes 
 Monte Carlo methods randomly select inputs from the input distributions 
 Stratified methods (such as the Latin Hypercube method) seek to reduce the 

number of experiments, but still generate a representative sample 
 Both methods are VERY computationally intensive 

Latin Hypercube Sampling Monte Carlo Sampling 
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Overview of QUICKER 
 

 QUICKER (Quantifying Uncertainty In Computational Knowledge Engineering Rapidly) 
 QUICKER is a new methodology that is intended to be used instead of conventional 

sampling methods such as Lathin Hypercube Sampling, Monte Carlo Sampling, 
Quasi-Monte Carlo Sampling, etc. 

 Since sampling, effectively running computational simulations, is the most time 
consuming aspect of Uncertainty Quantification, the significant reduction in 
computational costs from using QUICKER make Uncertainty Quantification far more 
affordable 

 QUICKER is orders of magnitude faster than conventional sampling 
 Through the use of QUICKER, it is typical to see computational time reductions in 

excess of 99% of the time required for conventional methods 

 QUICKER does not sacrifice accuracy 
 Typical RMS differences between QUICKER and conventional methodologies are 

less than 8% 

 QUICKER is noninvasive and transparent 
 QUICKER can be implemented without modifying the simulation source code 
 The QUICKER methodology does not require esoteric math or complicated 

algorithms 
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Identifying key points to sample 

Gaussian input distribution Monotonic system Unimodal output distribution 
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 Only a small number of key points are necessary 
 For a monotonic system with a Gaussian 

input, it is necessary to select only a few 
input points in order to completely define the 
output distribution   

 These points are chosen at the mean and 
equal standard deviations 
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Using a lognormal output distribution 

Gaussian input distribution Monotonic system Unimodal output distribution 
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 A lognormal distribution is versatile 
 A lognormal distribution can be used to 

represent symmetric or positive skewness 
 Therefore, lognormal distributions will be 

used in QUICKER 
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Accounting for constant offset 

Gaussian input distribution Offset monotonic system Unimodal output distribution 
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J f(G)-15.7 

f(H)-15.7 

f(J)-15.7 

Axis is increased by f(0), 
15.7 in this instance 



Advanced Materials and Technologies Laboratory 

Accounting for negative skewness 

Gaussian input distribution Monotonically 
decreasing system 

Unimodal output distribution 
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f(L) 

f(M) f(K) 

Axis is flipped about the max 
result, f(K) in this instance 

 

 Certain outputs have a negative skewness 
 The lognormal distribution has a positive 

skewness, and in order to account for this, 
the plot needs to be “flipped” about the 
maximum point 

 Note that the function reverses the relative 
magnitude of the inputs 
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Sampling within QUICKER 

Input distr. 

Simul. # 

For a system with two input 
distributions, three points are 
selected on each input distribution 

The minimums and means are 
simulated, and then an orthogonal 
array is used to combine the extremes 
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A specific example of QUICKER 

Input distr. 

Simul. # 

The Rosenbrock function is a typical 
test case for optimization routines 



Advanced Materials and Technologies Laboratory 

Composite representation of uniform 

 Epistemic uncertainty is typically represented as a uniform distribution 
 A combination of Gaussian distributions can be used to represent a 

uniform distribution 
 Note that the Gaussian distribution is scaled depending on the uniform 

distribution 
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Results of composite uniform 

 To a point, composite distributions can provide a more accurate prediction 
 Functions of only one variable are typically the hardest to represent with 

uniform composite distirbutions 
 Note that the improvement from 2X to 3X composite distribution is 

negligible 
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3dCfb MFIX scenario with 1X uniform 

5% standard deviation 
Error: 4.93% 

10% standard deviation 
Error: 4.68% 

15% standard deviation 
Error: 6.42% 

20% standard deviation 
Error: 7.39% 

LHS computation time: 125.56 hours 
QUICKER computation time: 4.52 hours 
Computational time savings of 96.4% 

Measuring porosity at 
a specified location 
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Ahmadi MFIX scenario with 1X uniform 

5% standard deviation 
Error: 4.73% 

10% standard deviation 
Error: 6.48% 

15% standard deviation 
Error: 3.36% 

20% standard deviation 
Error: 1.77% 

LHS computation time: 4.58 hours 
QUICKER computation time: 0.10 hours 
Computational time savings of 97.8% 

Measuring solid 
velocity at a 
specified location 
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3dCfb MFIX scenario with 2X uniform 

5% standard deviation 
Error: 11.65% 

10% standard deviation 
Error: 3.93% 

15% standard deviation 
Error: 3.07% 

20% standard deviation 
Error: 1.41% 

LHS computation time: 125.56 hours 
QUICKER computation time: 36.16 hours 
Computational time savings of 71.2% 

Measuring porosity at 
a specified location 
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Results of a blind study 

CO mass fraction 

Tar mass fraction Volatile matter 
RMS = 4.3% RMS = 7.9% 

RMS = 4.2% 

 Results of a blind chemical kinetics study 
 Using the QUICKER methodology, a 

set of samples points were provided 
to Dr. Aytekin Gel to run through his 
simulation 

 The developers of QUICKER had no 
prior knowledge of the specifics of 
this kinetics model 

MC computation time: 1.52 hours 
QUICKER computation time: 0.0019 hours 
Computational time savings of 99.9% 
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