Uncertainty Quantification Analysis in Multiphase Flow CFD Simulations With Application to Coal Gasifiers

Aytekin Gel1,2, Mehrdad Shahnam1, Tingwen Li1,3, Chris Guenther1

1 National Energy Technology Laboratory, Morgantown, WV, U.S.A.
2 ALPEMI Consulting LLC, Phoenix, AZ, U.S.A.
3 URS Corporation, Morgantown, WV, U.S.A.
Presentation Outline

- Gasification
- Overview of Uncertainty Quantification Framework
- Preliminary Results for Demonstration of Non-intrusive UQ Analysis:
 - Gasification simulations
 - C3M – PCCL simulations
- Summary & Conclusions
- Future Direction
Gasification

- Over 40% of electricity worldwide is generated through the use of coal
- New environmental regulations, mandating reduction on greenhouse gases and other pollutants will impact coal-based power plants
- Coal gasification technology promises to generate power with reduced environmental impact
What is Gasification?

- Coal,
- Biomass,
- Solid Waste
- Steam
- Oxygen

Extreme Conditions:
- 1,000 psig or more
- 2,600 Deg F
- Corrosive slag and H₂S gas

Products (syngas)
- CO (Carbon Monoxide)
- H₂ (Hydrogen)
[CO/H₂ ratio can be adjusted]

By-products
- H₂S (Hydrogen Sulfide)
- CO₂ (Carbon Dioxide)
- Slag (Minerals from Coal)

Gas Clean-Up
Before Product Use

Challenge: How can we design commercial scale gasifiers for optimized operation?

Use validated computer models for answering scale up questions

Parametric Study
- Length/Diameter
- Coal feed rate
- Solids circulation rate
- Recycled syngas
- Coal jet penetration

Simulation Based Engineering by employing computational models with Computational Fluid Dynamics (CFD)

Sources:
- Commercial Scale Gasifier

Source: Advanced coal gasifier designs using large-scale simulations, Syamlal et al. (2009)
Quick Overview of Uncertainty Quantification (UQ) Methods

Intrusive UQ
- Uncertain inputs → Model → Uncertainty information
- Stochastic simulation (UQ embedded in the model)

Several Available Methods:
- Polynomial Chaos Expansions (PCE)
- Stochastic Expansion

Pros:
- Quick prediction

Cons:
- Surgery in the code and long development time

Non-Intrusive UQ
- Uncertain inputs → UQ Toolbox → Model
- Many deterministic simulations

Several Available Methods:
- Bayesian Techniques
- PCE
- Surrogate Model + Monte Carlo

Pros:
- Short development time

Cons:
- Sampling error

Source: An Introduction to Uncertainty Quantification Methodologies and Methods, C. Tong (2012) and Comparing Uncertainty Quantification Methods Under Practical Industry Requirements, Wang et al. (2012)
Several Questions To Be Addressed By Using Non-intrusive Uncertainty Quantification and Propagation In Our Simulations?

- What parameters have uncertainty and how to represent these uncertainties adequately?
- What impact do parameter uncertainties have on model outputs? Establish confidence levels & quantitative quality assessment in simulation results.
- Which parameters cause the most output uncertainties? [Sensitivity Analysis]
- How do output uncertainties affect input uncertainties? [Inverse UQ]
- How to use observed data to calibrate system parameters? [Data Fusion and Calibration]
- In view of uncertainty, how to quantify risk? E.g. given input uncertainties what is the probability of achieving carbon conversion below certain level? [Risk analysis]
Survey To Identify Various Parametric Sources of Uncertainties and Their Mathematical Characterization

<table>
<thead>
<tr>
<th>Importance Rank (Select)</th>
<th>Sources of Uncertainty in Model Input or Uncertain Input Parameters</th>
<th>Symbol or Variable Name</th>
<th>Units</th>
<th>The most likely value (n) or the Nominal value</th>
<th>Minimum value: (a) < (n) (%)</th>
<th>Maximum value: (b) > (n) (%)</th>
<th>Minimum value (% of n)</th>
<th>Maximum value (% of n)</th>
<th>Justification for the provided "most likely value" and lower/upper bounds (Please provide reference citations)</th>
<th>Classification of Uncertainty (Select from list)</th>
<th>Characterize Uncertainty (Select from list)</th>
<th>If Aleatory, set Probability distribution & parameters</th>
<th>Is it correlated with any other source of uncertainty?</th>
<th>If correlated then specify input parameter & why</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mean solids circulation rate</td>
<td>Gs</td>
<td>kg/s</td>
<td>14</td>
<td>90</td>
<td>110.00%</td>
<td>Experimental data [1,2]</td>
<td>Aleatory (A)</td>
<td>PDF</td>
<td>N(13.97,0.54)</td>
<td>Y</td>
<td>Fsi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Mean superficial gas velocity at bottom</td>
<td>Ug</td>
<td>m/s</td>
<td>7.58</td>
<td>96</td>
<td>106.00%</td>
<td>Experimental data [1,3]</td>
<td>Aleatory (A)</td>
<td>PDF</td>
<td>N(7.57,0.04)</td>
<td>Y</td>
<td>Fsi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Gas flow rate from standpipe and L-valve</td>
<td>Fsl</td>
<td>SCMs</td>
<td>0.029</td>
<td>99.955</td>
<td>100.05%</td>
<td>Experimental data [1,3]</td>
<td>Aleatory (A)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Temperature</td>
<td>T</td>
<td>K</td>
<td>203</td>
<td>287</td>
<td>299</td>
<td>Experimental data [1,3]</td>
<td>Aleatory (A)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Pressure at top exit</td>
<td>P</td>
<td>kPa</td>
<td>105</td>
<td>99.996</td>
<td>100.00%</td>
<td>Experimental data [1,3]</td>
<td>Aleatory (A)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Particle diameter</td>
<td>dp</td>
<td>um</td>
<td>802</td>
<td>784</td>
<td>820</td>
<td>Experimental data [1]</td>
<td>Aleatory (A)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Particle density</td>
<td>rho</td>
<td>kg/m3</td>
<td>863</td>
<td>99.99</td>
<td>100.01%</td>
<td>Experimental data [1]</td>
<td>Aleatory (A)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>restitution coefficient</td>
<td>e</td>
<td>-</td>
<td>0.8</td>
<td>-</td>
<td>-</td>
<td>Literature [4]</td>
<td>Epistemic (E)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>sphericity (*)</td>
<td>phi</td>
<td>-</td>
<td>0.95</td>
<td>-</td>
<td>-</td>
<td>Experimental data [1]</td>
<td>Aleatory (A)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>wall boundary for solids phase ($)</td>
<td>BC</td>
<td>-</td>
<td>partial-slip</td>
<td>-</td>
<td>-</td>
<td>Expert opinion [5]</td>
<td>Epistemic (E)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>interphase drag ($)</td>
<td>beta</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Epistemic (E)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A Simple Workflow for Non-intrusive Parametric Uncertainty Quantification and Propagation:

1. Check if the number of inputs is greater than 10? (Yes/No)
 - Yes: Parameter screening → Response Surface analysis
 - No: Proceed to the next step

2. Check if there is data available? (Yes/No)
 - Yes: Response Surface + Parameter distributions
 - No: Uncertainty analysis

3. If data is available, proceed with Data fusion → Reliability analysis

4. If data is not available, proceed with Sobol’ Sensitivity analysis

Source: An Introduction to Uncertainty Quantification Methodologies and Methods, C. Tong (2012)
Input Uncertainty Propagation and Quantification – Non-intrusive method

- No need to modify simulation models: “black boxes”
- No need for analysis of the mathematical structures in the model
- May require large sample size for sufficient accuracy
- Model form uncertainty and numerical approximation uncertainty are disregarded.

1. Application inputs
2. UQ engine (PSUADE)
3. Sampling design
4. Simulation Model (FLUENT)
5. Analysis:
 - Fit Response Surface (RS)
 - Conduct UQ Analysis on RS, e.g. perform Sensitivity Study

Input Uncertainty Propagation and Quantification – Non-intrusive method
Preliminary Results for Demonstration of Non-intrusive Parametric Uncertainty Quantification Study with MFIX Simulations:

- Sample Problem # 1: 2D Gasification (Aleatory) *
- Sample Problem # 2: 2D Gasification (Mixed)
- Sample Problem # 3: C3M – PC Coal Lab (Aleatory)

* This work was presented at the 2012 ASME V&V Symposium in Las Vegas, Nevada, May 3rd, 2012.
Sample Problem # 1 for Parametric Non-Intrusive UQ Study: 2D Gasification (Aleatory Uncertainty only)

Objective: Determine the effect of uncertainty in mass flow rate and O2 mass fraction on the species composition at the outlet of the gasifier.

Gasifier Model

Solids: PRB coal with $d_p = 0.015$ cm, $\rho_p = 2.93$ g/cm3

Geometric dimensions = 52 cm x 1300 cm

Grid Resolution = 4,579 cells

Governing Physics & Models: Multiphase flow (TFM) hydrodynamics, heat transfer, chemical reactions.

Spatial discretization: Second Order Upwind

Temporal discretization: 1st order

Computational time per simulation: ~ 2 weeks, 16 cores
Uncertainty Quantification Study Properties:

Input parameters with Uncertainty (min-max range):
1. Inlet mass flow rate (kg/s)

 $[1.575 - 2.424]$
2. O$_2$ species mass fraction

 $[0.259 - 0.4]$

System Response Variables:
Time averaged mole fraction at the exit plane for species
1. CH$_4$
2. CO
3. H$_2$

Sampling Method:
CCD, SparseGrid

Sample Size
- 17 (CCD)
- 13 (SparseGrid)

* This work was presented at the 2012 ASME V&V Symposium, Las Vegas, Nevada, May 3rd, 2012.
Time averaged temperature (A) and its RMS value (B)

Time averaged CO mass fraction (A) and its RMS value (B)
Challenges in Multiphase Flow Simulation

- Typical 3D CFD simulation of a gasifier can take up to 6 to 8 weeks to reach a pseudo-steady state.

- To expedite the process, a 2D transport gasifier is modeled using the Two-Fluid Multiphase model in ANSYS FLUENT version 14.0.

- Coal pyrolysis, combustion, gasification along with H₂, CO and CH₄ and soot combustion are modeled using 16 chemical reactions.

- Total of 33 transport equations are solved.
Surrogate Model Construction

- Non-intrusive UQ requires many samples, i.e.,
 - many simulations with the CFD code

- Computational cost per sample may prohibit UQ
 - On the average 30 days on 16 cores were employed to achieve converged solutions for the gasifier.
 - Other constraints such as license cost could be factor

- Need to construct a surrogate model

- Various surrogate models available:
 - Data-fitted surrogate models (Parametric polynomial response surfaces, Nonparametric MARS, GPM)
 - Reduced-order Models (ROM)
 - Stochastic collocation Models with Sparse Grid
Surrogate Model Construction (cont’ d)

- Employed statistical design of experiments to sample
 - Computational cost constrained the sampling method choice.
 - Initially 9 simulations based on Central Composite Design (CCD) was employed. This analysis necessitated additional runs.
 - Initial run matrix was augmented with another 8-run CCD

<table>
<thead>
<tr>
<th>Run No</th>
<th>Inlet Flow Rate</th>
<th>Xg O2</th>
<th>#1 CH4</th>
<th>#2 CO2</th>
<th>#3 CO</th>
<th>#4 H2</th>
<th>#5 H2O</th>
<th>#6 Soot</th>
<th>#7 wgs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.700</td>
<td>0.280</td>
<td>0.0798</td>
<td>0.0145</td>
<td>0.0040</td>
<td>0.0828</td>
<td>0.5732</td>
<td>0.0804</td>
<td>0.5131</td>
</tr>
<tr>
<td>2</td>
<td>2.300</td>
<td>0.280</td>
<td>0.0752</td>
<td>0.0208</td>
<td>0.0051</td>
<td>0.0764</td>
<td>0.5434</td>
<td>0.0748</td>
<td>0.5568</td>
</tr>
<tr>
<td>3</td>
<td>1.700</td>
<td>0.378</td>
<td>0.0781</td>
<td>0.0199</td>
<td>0.0050</td>
<td>0.0798</td>
<td>0.5765</td>
<td>0.0775</td>
<td>0.5288</td>
</tr>
<tr>
<td>4</td>
<td>2.300</td>
<td>0.378</td>
<td>0.0743</td>
<td>0.0286</td>
<td>0.0065</td>
<td>0.0740</td>
<td>0.5489</td>
<td>0.0737</td>
<td>0.5789</td>
</tr>
<tr>
<td>5</td>
<td>1.576</td>
<td>0.329</td>
<td>0.0799</td>
<td>0.0160</td>
<td>0.0042</td>
<td>0.0827</td>
<td>0.5750</td>
<td>0.0803</td>
<td>0.5354</td>
</tr>
<tr>
<td>6</td>
<td>2.424</td>
<td>0.329</td>
<td>0.0779</td>
<td>0.0228</td>
<td>0.0055</td>
<td>0.0793</td>
<td>0.5597</td>
<td>0.0784</td>
<td>0.5742</td>
</tr>
<tr>
<td>7</td>
<td>2.000</td>
<td>0.259</td>
<td>0.0787</td>
<td>0.0155</td>
<td>0.0041</td>
<td>0.0814</td>
<td>0.5640</td>
<td>0.0796</td>
<td>0.5266</td>
</tr>
<tr>
<td>8</td>
<td>2.000</td>
<td>0.399</td>
<td>0.0791</td>
<td>0.0237</td>
<td>0.0058</td>
<td>0.0802</td>
<td>0.5705</td>
<td>0.0798</td>
<td>0.5651</td>
</tr>
<tr>
<td>9</td>
<td>2.000</td>
<td>0.329</td>
<td>0.0776</td>
<td>0.0198</td>
<td>0.0049</td>
<td>0.0793</td>
<td>0.5661</td>
<td>0.0775</td>
<td>0.5493</td>
</tr>
<tr>
<td>10</td>
<td>1.850</td>
<td>0.304</td>
<td>0.0783</td>
<td>0.0162</td>
<td>0.0042</td>
<td>0.0811</td>
<td>0.5658</td>
<td>0.0786</td>
<td>0.5445</td>
</tr>
<tr>
<td>11</td>
<td>2.150</td>
<td>0.304</td>
<td>0.0776</td>
<td>0.0180</td>
<td>0.0045</td>
<td>0.0796</td>
<td>0.5652</td>
<td>0.0778</td>
<td>0.5557</td>
</tr>
<tr>
<td>12</td>
<td>1.850</td>
<td>0.354</td>
<td>0.0789</td>
<td>0.0188</td>
<td>0.0046</td>
<td>0.0812</td>
<td>0.5716</td>
<td>0.0792</td>
<td>0.5632</td>
</tr>
<tr>
<td>13</td>
<td>2.150</td>
<td>0.354</td>
<td>0.0780</td>
<td>0.0215</td>
<td>0.0052</td>
<td>0.0797</td>
<td>0.5645</td>
<td>0.0785</td>
<td>0.5733</td>
</tr>
<tr>
<td>14</td>
<td>1.788</td>
<td>0.329</td>
<td>0.0781</td>
<td>0.0175</td>
<td>0.0045</td>
<td>0.0807</td>
<td>0.5679</td>
<td>0.0783</td>
<td>0.5376</td>
</tr>
<tr>
<td>15</td>
<td>2.212</td>
<td>0.329</td>
<td>0.0774</td>
<td>0.0206</td>
<td>0.0050</td>
<td>0.0794</td>
<td>0.5611</td>
<td>0.0778</td>
<td>0.5769</td>
</tr>
<tr>
<td>16</td>
<td>2.000</td>
<td>0.294</td>
<td>0.0781</td>
<td>0.0165</td>
<td>0.0042</td>
<td>0.0809</td>
<td>0.5645</td>
<td>0.0783</td>
<td>0.5538</td>
</tr>
<tr>
<td>17</td>
<td>2.000</td>
<td>0.364</td>
<td>0.0783</td>
<td>0.0199</td>
<td>0.0049</td>
<td>0.0803</td>
<td>0.5665</td>
<td>0.0787</td>
<td>0.5659</td>
</tr>
</tbody>
</table>
Surrogate Model Construction (cont’d)

- Visual illustration of the sampling locations in the parameter space for two input parameters:

![Graph showing mass fraction of oxygen at the inlet vs. inlet flow rate.]

Nominal or Baseline Condition:
Flow Rate = 2 kg/s
Xg_O2 = 0.329
[1 run]

Central Composite Design (CCD) # 1
[+8 runs]

Central Composite Design (CCD) # 2
[+8 runs]
Surrogate Model Construction (cont’d)
Response # 3 mole fraction CO

- Quadratic polynomial regression based surrogate model
Surrogate Model Adequacy Check
Response # 3 mole fraction CO

- Polynomial regression metrics:
 \[\text{Adj } R^2 = 95.5\% \]
- Cross-validation errors:
 - No systematic bias error as mean CV error \(\sim 0 \)
 - Standard deviation of errors \(\sim 2.8\times10^{-4} \)
Surrogate Model Construction (cont’d)
Response # 4 mole fraction H2 (iteration 1)

- Quadratic polynomial regression based surrogate model
Surrogate Model Adequacy Check
Response #4 mole fraction H2 (iteration 1)

- Polynomial regression metrics:
 - Adj. $R^2 = 64.3\%$
 - Cross-validation errors:
 - No systematic bias error as mean CV error ~ 0
 - Standard deviation of errors $\sim 2.8e-03$

Adjusted R^2 implies only 64% of the variability observed in H2 mass fraction can be explained with the quadratic regression based surrogate model constructed!

Several outliers causing the degradation in the surrogate model
Surrogate Model Adequacy Check
Response # 4 mole fraction H2 (iteration 2)

- Polynomial regression metrics:
 - Adj $R^2 = 86.3\%$
- Cross-validation errors:
 - No systematic bias error as mean CV error ~ 0
 - Standard deviation of errors $\sim 1.2e^{-03}$

Adjusted R^2 improved by removing one outlier (Run # 4)

Still several outliers causing problems but we have limited number of samples so assumed the surrogate model to be adequate for the purposes of this study.
Surrogate Model Construction (cont’d)
Response # 4 mole fraction H2 (iteration 2)

- Quadratic polynomial regression based surrogate model
Surrogate Model Construction (cont’d)
Response #1 mole fraction CH4 (iteration 2)

- Quadratic polynomial regression based surrogate model
Surrogate Model Adequacy Check
Response #1 mole fraction CH4 (iteration 2)

- Polynomial regression metrics:
 - \(\text{Adj } R^2 = 84\% \)
- Cross-validation errors:
 - No systematic bias error as mean CV error \(\sim 0 \)
 - Standard deviation of errors \(\sim 9.1e-04 \)

Adjusted \(R^2 \) improved from 51% (iteration 1) by removing one outlier (Run #4)

Still several outliers causing problems but we have limited number of samples so assumed the surrogate model to be adequate for the purposes of this study.
Both input parameters were assumed to be aleatory uncertainty. Probability density functions were assigned and Monte Carlo simulation was performed by random drawings for both variables and evaluating surrogate.

1. **Inlet Flow Rate**
 - Normal (2 kg/s, 0.01 kg/s) truncated [1.575, 2.424]

2. **O2 mass fraction**
 - Normal (0.329, 0.0017) truncated [0.259, 0.4]

Summary Statistics

Inlet Flow Rate
- Mean: 2.000115
- Std Dev: 0.0105938
- Std Err Mean: 0.0001059
- Upper 95% Mean: 2.0003227
- Lower 95% Mean: 1.9999073
- N: 10000

O2 mass fraction
- Mean: 0.3290139
- Std Dev: 0.0017313
- Std Err Mean: 1.7313e-5
- Upper 95% Mean: 0.3290478
- Lower 95% Mean: 0.32898
- N: 10000
Input Uncertainty Forward Propagation with 10000 sample Monte Carlo Simulation using the Surrogate:
Response # 3 CO

Summary Statistics
- Mean: 0.0045277
- Std Dev: 2.678e-5
- Std Err Mean: 2.678e-7
- Upper 95% Mean: 0.0045282
- Lower 95% Mean: 0.0045272
- N: 10000

Empirical Cumulative Distribution Function

<table>
<thead>
<tr>
<th>Quantiles</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.0% maximum</td>
<td>0.00464</td>
</tr>
<tr>
<td>99.5%</td>
<td>0.0046</td>
</tr>
<tr>
<td>97.5%</td>
<td>0.00458</td>
</tr>
<tr>
<td>90.0%</td>
<td>0.00456</td>
</tr>
<tr>
<td>75.0% quartile</td>
<td>0.00455</td>
</tr>
<tr>
<td>50.0% median</td>
<td>0.00453</td>
</tr>
<tr>
<td>25.0% quartile</td>
<td>0.00451</td>
</tr>
<tr>
<td>10.0%</td>
<td>0.00449</td>
</tr>
<tr>
<td>2.5%</td>
<td>0.00448</td>
</tr>
<tr>
<td>0.5%</td>
<td>0.00446</td>
</tr>
<tr>
<td>0.0% minimum</td>
<td>0.00442</td>
</tr>
</tbody>
</table>
Input Uncertainty Forward Propagation with 10000 sample Monte Carlo Simulation using the Surrogate: Response # 4 H2

Summary Statistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.0803268</td>
</tr>
<tr>
<td>Std Dev</td>
<td>0.0000418</td>
</tr>
<tr>
<td>Std Err Mean</td>
<td>4.1805e-7</td>
</tr>
<tr>
<td>Upper 95% Mean</td>
<td>0.0803276</td>
</tr>
<tr>
<td>Lower 95% Mean</td>
<td>0.080326</td>
</tr>
<tr>
<td>N</td>
<td>10000</td>
</tr>
</tbody>
</table>

Empirical Cumulative Distribution Function

Quantiles

<table>
<thead>
<tr>
<th>Percentile</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.0%</td>
<td>maximum 0.08048</td>
</tr>
<tr>
<td>99.5%</td>
<td>0.08043</td>
</tr>
<tr>
<td>97.5%</td>
<td>0.08041</td>
</tr>
<tr>
<td>90.0%</td>
<td>0.08038</td>
</tr>
<tr>
<td>75.0%</td>
<td>quartile 0.08035</td>
</tr>
<tr>
<td>50.0%</td>
<td>median 0.08033</td>
</tr>
<tr>
<td>25.0%</td>
<td>quartile 0.0803</td>
</tr>
<tr>
<td>10.0%</td>
<td>0.08027</td>
</tr>
<tr>
<td>2.5%</td>
<td>0.08025</td>
</tr>
<tr>
<td>0.5%</td>
<td>0.08022</td>
</tr>
<tr>
<td>0.0%</td>
<td>minimum 0.08018</td>
</tr>
</tbody>
</table>
Uncertainty Quantification Study Properties:

Input parameters with Uncertainty (min-max range):

1. Inlet mass flow rate (kg/s)
 \[1.575 - 2.424\]
2. \(O_2\) species mass fraction
 \[0.259 - 0.4\]

System Response Variables:

Time averaged mole fraction at the exit plane for species
1. \(CH_4\)
2. \(CO\)
3. \(H_2\)

Sampling Method: CCD, SparseGrid

Sample Size: 17 (CCD), 13 (SparseGrid)
Input Uncertainty Forward Propagation for Mixed Epistemic & Aleatory Uncertainty using the Surrogate: Response # 3 CO

- Gaussian Process Model based surrogate model employed.
- There are many CDFs
 - Each corresponds to aleatoric parameters with the epistemic fixed.
- Epistemic uncertainties are dominating.
Objective: Determine the effect of uncertainty in heating rate, temperature and pressure on species mass fractions

Uncertainty Quantification Study Properties:

<table>
<thead>
<tr>
<th>Input parameters with Uncertainty [min-max range]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Heating rate (°C/s) [200 – 9727]</td>
</tr>
<tr>
<td>(2) Temperature (°C) [500 – 1010]</td>
</tr>
<tr>
<td>(3) Pressure (kPa) [861 – 3447]</td>
</tr>
</tbody>
</table>

System Response Variables:
Species mass fractions computed by C3M – PCCL
(1) CO (2) CO2 (3) tar (4) H2 (5) H2O (6) CH4

Sampling Method: LPTAU, Direct Monte Carlo, SparseGrid
Sample Size = 250 (LPTAU), 10,000 (Direct Monte Carlo)
Sample Problem # 3 for Parametric Non-Intrusive UQ Study:
C3M PC Coal Lab (Aleatory Uncertainty) cont’d

• The input parameters were assumed as aleatory uncertainty and assigned with the following PDFs for Monte Carlo simulations:
 – Heating Rate: Normal (µ=3000, σ=1000)
 – Temperature: Normal (µ=800, σ=100)
 – Pressure: Normal (µ=2000, σ=500)

• PSUADE UQ toolbox was used to generate truncated PDFs from the above prescribed distributions for random drawings to be used in the Monte Carlo simulations.

• Two approaches employed:
 1. Monte Carlo(MC) Simulation through a surrogate model
 • C3M-PCCL runs at 250 sample points performed to create MARS based non-parametric response surface to act as surrogate model.
 2. Direct Monte Carlo Simulation without a surrogate model
 • Instead of employing a surrogate model, C3M-PCCL was directly executed for the 10,000 sample conditions.
Empirical CDF Plots
Response 1: CO species mass fraction

Direct Monte Carlo Simulation Results for Species Mass Fraction CO

Above plot shows Empirical Cumulative Density Function plot from Direct Monte Carlo simulations.

Given prescribed input uncertainties the probability of CO mass fraction being between 0.12 and 0.135 is about 60%.
Correlation Matrix and Scatterplot for Species Mass Fractions
(Response Variables 1 to 6)
Sample Problem # 3 for Parametric Non-Intrusive UQ Study: C3M PC Coal Lab (Aleatory Uncertainty) cont’d

Sensitivity Analysis with Sobol Total Indices Method (Response Variables 1 to 6 with MARS based surrogate model from 250 runs)
Summary and Conclusions

- Identification and characterization of uncertainties are as important as propagation/analysis of uncertainties.
- Effective and efficient UQ requires cross fertilization between various disciplines.
- Non-intrusive UQ enables black box treatment of the application code but requires many samples to achieve the necessary accuracy by reducing sampling error.
- Typically 80% of effort spent goes into constructing an adequate surrogate model.
- The surrogate model adequacy check points out to the need for better convergence criteria in CFD.
- The surrogate model is able to capture when pyrolysis is dominant and when gasification is dominant.
Survey To Identify Various Parametric Sources of Uncertainties and Their Mathematical Characterization

<table>
<thead>
<tr>
<th>Importance Rank</th>
<th>Sources of Uncertainty in Model Input or Uncertain Input Parameters</th>
<th>Symbol or Variable Name</th>
<th>Units</th>
<th>The most likely value (n) or the Nominal value</th>
<th>Minimum value: (a) < (n)</th>
<th>Maximum value: (b) > (n)</th>
<th>Minimum value: (a) < (n) % of n</th>
<th>Maximum value: (b) > (n) % of n</th>
<th>Classification for the provided "most likely value" and lower/upper bounds (Please provide reference citations)</th>
<th>Characterize Uncertainty (Select from list)</th>
<th>If Aleatory, set Probability distribution & parameters</th>
<th>Is it correlated with any other source of uncertainty?</th>
<th>If correlated then specify input parameter & why</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mean solids circulation rate</td>
<td>Gs</td>
<td>kg/s</td>
<td>14</td>
<td>90</td>
<td>110.00%</td>
<td>90.00%</td>
<td>110.00%</td>
<td>Experimental data [1.2]</td>
<td>Aleatory (A)</td>
<td>PDF</td>
<td>N(13.97,0.34)</td>
<td>Y</td>
</tr>
<tr>
<td>2</td>
<td>Mean superficial gas velocity at bottom</td>
<td>Ug</td>
<td>m/s</td>
<td>7.58</td>
<td>96</td>
<td>105.00%</td>
<td>96.00%</td>
<td>105.00%</td>
<td>Experimental data [1.3]</td>
<td>Aleatory (A)</td>
<td>PDF</td>
<td>N(7.57,0.04)</td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>Gas flow rate from standpipe and L-valve</td>
<td>Fsl</td>
<td>SCMs</td>
<td>0.029</td>
<td>99.955</td>
<td>100.00%</td>
<td>99.955</td>
<td>100.00%</td>
<td>Experimental data [1.3]</td>
<td>Aleatory (A)</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Temperature</td>
<td>T</td>
<td>K</td>
<td>293</td>
<td>287</td>
<td>299</td>
<td>99.996</td>
<td>100.00%</td>
<td>Experimental data [1.3]</td>
<td>Aleatory (A)</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Pressure at top exit</td>
<td>P</td>
<td>kPa</td>
<td>105</td>
<td>99.966</td>
<td>100.00%</td>
<td>99.966</td>
<td>100.00%</td>
<td>Experimental data [1.3]</td>
<td>Aleatory (A)</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Particle diameter</td>
<td>dp</td>
<td>um</td>
<td>863</td>
<td>820</td>
<td>820</td>
<td>99.99</td>
<td>100.01%</td>
<td>Experimental data [1]</td>
<td>Aleatory (A)</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Particle density</td>
<td>rho</td>
<td>kg/m³</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>99.99</td>
<td>100.01%</td>
<td>Experimental data [1]</td>
<td>Aleatory (A)</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>restitution coefficient</td>
<td>e</td>
<td>-</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>99.99</td>
<td>100.01%</td>
<td>Literature [9]</td>
<td>Epistemic (E)</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>sphericity (*)</td>
<td>phi</td>
<td>-</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>99.99</td>
<td>100.00%</td>
<td>Experimental data [1]</td>
<td>Aleatory (A)</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>wall boundary for solids phase ($)</td>
<td>BC</td>
<td>-</td>
<td>partial-slip</td>
<td>-</td>
<td>-</td>
<td>99.99</td>
<td>100.00%</td>
<td>Expert opinion [5]</td>
<td>Epistemic (E)</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>interphase drag (A)</td>
<td>beta</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>99.99</td>
<td>100.00%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Justification for the provided "most likely value" and lower/upper bounds (Please provide reference citations):

- Experimental data [1.2]
- Experimental data [1.3]
- Literature [4]
- Literature [4]
- Expert opinion [5]
- Expert opinion [5]
- Expert opinion [5]
- Expert opinion [5]

Characterize Uncertainty (Select from list):

- Aleatory (A)
- Experimental (E)
- Expert opinion (O)

If Aleatory, set Probability distribution & parameters:

- PDF
- N(13.97,0.34)
- N(7.57,0.04)
- N(13.97,0.34)
- N(7.57,0.04)

Is it correlated with any other source of uncertainty?:

- Y
- Y
- Y
- Y
- N
- N
- N
- N
- N
- N

If correlated then specify input parameter & why:

- Fsl
Future Work

- Improve identification and characterization of uncertainties for application domain.
- Expand the work on mixed aleatory and epistemic uncertainty cases.
- Explore Bayesian techniques
 - GPM/SA toolbox from Los Alamos Lab.
- Better quantification of sampling error and surrogate model errors
- Extend stochastic collocation and polynomial chaos based surrogate model using sparse grids.
Questions?

Acknowledgments:
Dr. Charles Tong, CASC, Lawrence Livermore National Laboratory (LLNL).

This technical effort was performed in support of the National Energy Technology Laboratory’s ongoing research in multiphase flows under the RES contract DE-AC26-04NT41817 and RES contract DE-FE0004000.