An Euler-Euler CFD Model for Biomass Gasification in Fluidized Bed

Qingluan Xue and Rodney Fox

Ames Laboratory, Iowa State University
DE-AC02-07CH11358

NETL Conference on Multiphase Flow Science
Morgantown, WV, May 22-24, 2012
Objectives

- Provide MFIx-based Euler-Euler CFD models for polydisperse, reacting, variable density solid particles

- Facilitate the numerical simulation and scale up of energy systems such as gasifier
Background: Multiphysics & Multiscales

![Graphs showing y-component of velocity and axial height in bed](image)

- y-component of velocity (cm/s)
- Axial height in bed (cm)
- Averaged apparent density (g/cm³)

Physical
- Density
- Size
- Drying

Chemical
- Volatile reaction
- Tar cracking
- Char oxidation and gasification
- Devolatilization

Fuel
- Biomass
- Volatiles (CO, CO₂, H₂, C₃H₆)
- Bio/Char

Produced Gas

Q. Xue & R.O. Fox (A Lab/ISU)

Polydisperse Biomass Gasification

May 22-24
Physical Models

- Spherical particle assumption
- Porosity and moisture modeled
- Uniform conversion model for micro-particles
 - Constant particle diameter (d_p)
 - Variable particle density (ρ_p) with increasing pores
 - Intra-particle transport ignored for micro-particle
- Couple continuity and species equation to update ρ_p

\[
\frac{1}{\rho_{\text{apparent}}} = \sum_{n=1}^{N} \frac{X_{s,n}}{(\rho_n)_{\text{true}}}
\]
Chemical Models

- **Devolatilization:** Biomass \rightarrow light gas (CO, CO$_2$, H$_2$, CH$_4$) + tar + char + H$_2$O
- **Tar reaction:** Tar (g) \rightarrow light gas (CO+ CO$_2$ + H$_2$ + CH$_4$ + H$_2$O) + inert Tar
- **Volatile reaction:**
 - Carbon monoxide oxidation: CO + 1/2 O$_2$ \rightarrow CO$_2$
 - Hydrogen oxidation: H$_2$ + 1/2 O$_2$ \rightarrow H$_2$O
 - Methane oxidation: CH$_4$ + 2 O$_2$ \rightarrow CO$_2$ + 2 H$_2$O
 - Water-gas shift: CO + H$_2$O \leftrightarrow CO$_2$ + H$_2$

Char combustion
- Partial combustion: C + 1/2 O$_2$ \rightarrow CO

Char gasification:
- Boudouard reaction: C + CO$_2$ \rightarrow 2 CO
- Steam gasification: C + H$_2$O \rightarrow CO + H$_2$
- Hydrogen gasification: C + 2 H$_2$ \rightarrow CH$_4$

Reaction rate based on $\text{min}[k = \exp[-E/RT], C(2\bar{S}_{ij}\bar{S}_{ij})^{1/2}]$
Implementation in MFIX-Continuum

- Time-splitting approach coupling hydrodynamics and kinetics
 \[\phi(t) \xrightarrow{\text{transport}} \phi^*(t + \Delta t) \xrightarrow{\text{chemical reaction}} \phi(t + \Delta t) \]

- Synchronized time-step for transport and reaction

![Diagram](image-url)
A Lab-scale Fluidized-bed Reactor

- syngas
- biomass
- air (N$_2$+O$_2$) / steam

Dimensions:
- 3.81 cm
- 10.62 cm
- 34.29 cm
Simulation Conditions

<table>
<thead>
<tr>
<th>Phase</th>
<th>Species (n)</th>
<th>X_n</th>
<th>T (K)</th>
<th>$\epsilon_g, \epsilon_{sm}$</th>
<th>ρ_{true} (g/cm3)</th>
<th>d (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gas (g)</td>
<td>N$_2$</td>
<td>1</td>
<td>1123</td>
<td>0.41, 1</td>
<td>EOSa</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>O$_2$</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>light gasb</td>
<td>0</td>
<td>1123</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tarc</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>solid ($s1$)</td>
<td>sand</td>
<td>1</td>
<td>1123</td>
<td>0.59, 0</td>
<td>2.649</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>biomassd</td>
<td>1</td>
<td></td>
<td></td>
<td>0.585</td>
<td></td>
</tr>
<tr>
<td></td>
<td>moisture</td>
<td>0</td>
<td></td>
<td></td>
<td>0.649</td>
<td></td>
</tr>
<tr>
<td>solid ($s2$)</td>
<td>char</td>
<td>0</td>
<td>300</td>
<td>0, 0</td>
<td>0.45</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>ash</td>
<td>0</td>
<td></td>
<td></td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>void</td>
<td>0</td>
<td></td>
<td></td>
<td>same as gas</td>
<td></td>
</tr>
</tbody>
</table>

a equation of state for an ideal gas
b includes CO, CO$_2$, H$_2$O, H$_2$, CH$_4$
c includes active tar and inert tar
d air fuel ratio ($\dot{m}_{air}/\dot{m}_{biomass}$) is 1.5
Simulation Cases

<table>
<thead>
<tr>
<th>Cases</th>
<th>air/biomass ratio</th>
<th>biomass moisture (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>base</td>
<td>1.5</td>
<td>0</td>
</tr>
<tr>
<td>2.1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>
Convergency History

- Gas Temperature and mass inside reactor

![Graph showing temperature and mass over time]

- Xue, Q. & Fox, R.O. (A Lab/ISU) Polydisperse Biomass Gasification May 22-24 / 19
Biomass Apparent Density

Q. Xue & R.O. Fox (A Lab/ISU) Polydisperse Biomass Gasification May 22-24
Time- and Spatial-Averaged Density and Temperature (160-200 s)

- y-component of velocity (cm/s)
 - Axial height in bed (cm)
 - Averaged apparent density (g/cm³)
 - y-velocity
 - Apparent density

- Averaged temperature (K)
 - Axial height in bed (cm)
 - Averaged temperature (K)
 - Gas phase
 - Sand phase
 - Biomass phase
Gas Molar Fraction @180 s

- O2
- N2
- CO
- H2
- CO2
- CH4
- Tar
Biomass Mass Fraction @180 s

Bio

Char

Pore

Ash

Q. Xue & R.O. Fox (A Lab/ISU)
Polydisperse Biomass Gasification
May 22-24
Mass Flow Ratio (Air/Biomass)

Gas composition vs. mass flow ratio

Product yield vs. mass flow ratio

CO, CO₂, H₂, CH₄, Tar, N₂
Bed Temperature

Gas composition vs. temperature

Product yield vs. temperature
Moisture Content

Gas composition vs. moisture content

Product yield vs. moisture content
Variable particle density implemented for modeling bio-particle transport

Biomass (wood) gasification kinetics implemented

The model captures the key features of gasification

Different conditions tested
Support for this work was provided by US DOE-NETL (DE-AC02-07CH11358).