GPGPU Acceleration of MFIX-DEM

John Urbanic
Pittsburgh Supercomputing Center
May 22, 2012

WPSC

NATIONAL ENSRGY TECHNOLOGY LASORATORY

What | hope to communicate...

You’ve already heard something about MFIX. DB: BUB02_00097.nc
Time:0.97048

I’'m going to tell you about our work in progress:
accelerating MFIX using GPUs.

In particular, I'm going to focus on our novel approach of
using OpenACC to do so.

| believe many of you will find this a compelling
technology.

PSC Team: v 05557
Nick Nystrom
Anirban Jana
Yang Wang Figurs 1. Image o 30 Cartesan dataset showing gas velocty strearines s ribbors
John Urbanic

NATIONAL ENSRCGY TECHNOLOGY LASORATORY

WPSC

How we came to this point.

wic: TIME
Valug: Exclushe percent

PSC has been working with NETL on MFIX for some time. ==

pOreo_trim:77.0

art_timser TauSampling cop 177

_stremp

1895%] Tau_stop_timer Tausamoling cop1 77
277%] interpolste_Quants_crag_fys. instt674

©_MIerg 770

profil

_tric 70

_des_cali_orce_des mstr1sd

DOTSVInstF257

ce_des_calc_force_desinstf160

770

vamas [tau_prafiln,

1280% [tau_profile_tener_TauFAPI.cpo 516

1.270% TauErv_get_ebs_enabled TauSamaling copc i 77

1.275% [EE—] maloc_sel_slate 77.0

12:7% [— Taa_ol_lid TauSampling cop 177

a3] nyTheead__BRtsLaperEFy TauBSampling cppo1 49
1001% [E— orag_fgs_drag_fgs. ns1r3s0

1.169% [cgtsv_DOTSVinstF126

1.002% [des_dolprdcl_des_functions.insLt31
We used Tau, a sophisticated performance profiler with

1077% [Al sampling_suspend TauSampling cppeard
1.065% [l nterpolate_quanis_drag_fgs.nstt653
1.050% [cale_force_des_cale_force_des instt 167
. 1.054% [E—) rrryThresd_ BREsLaverSPy TauCAPLcpp.1 255

104% [EE— drag_fgs_ drag_fys ins11 358

countiess perspectives on the perrtormance aata. Ry —— R
089% [__ho_alloc:?7:0
0060 [calc_force_des_calc_foree_desinstid5:
0.026%] gid_based_neight
0879% [oiid_based_neight
nEen [Sks_drag_gs_drag_fgt instta6s

0.501% [twu_profile_start_TauFAFlcppél4
It also had considerable overhead and “interpretation” =

0600% [cale_force_des_cale_force_desinstf152
06ETE [lw_profi _ TauF A epp 20
DEIES [tinewvalues_cinswvaluss ingt 173
. 0637% [__hoi_dealloc:?70
0.623% [l tau_profile_starl_Tauf APl cop603
Issues 0615% [a0 aute_aloc77.0
. o6 ee] mes_grg_gs_drag_figs ins111039
0611% [l tau_profile_stan_ TauFarlcpp&16
0.608% [l des_dotproct_des_functions.inst25
0604% [Intermotate_quants_drag_fgs instf710
0.589% [Tau_sampling_resume TauSampling cpo 382

Sirt I ooy oot st ot 5
Nevertheless, we were able to capture many useful

TauF AP cpp §TT

Last year we profiled MFIX in the course of some of that
work.

br_ TAUFAPLEpp 510

search_grid_based_neighbor_search ing!
{_based_neighbor

0564% [Tau_get_tid TauCAP|cpp1434
055% [Tau_sampiing_suspend TauSampling.cop:372
0.548% [chowvaluvs_cnewvalues.ins 183
083] interpotation_interp_twod_wrclor_interpolabon_mod instfE82
. 14 14 nspas] insarpolaton_interp_twod_scalas_iramolation_mod intt 1468
visualizations of the work distribution unader various s, B oo a6
0474% [einewvalies_emewvalugs.instf1 07

0.458% [l interpolation_inberp_twod_vector_inberpolation, mus ins1f834
conditions (datasets). n

Apir2_ insimpokation_mid ing 3
0427% [interoolsbion_interm_twod_veclor_interoolstion_mod instres2
0.30% [ces_trag_gs_drag_igs.ins11931

0.375% [pgreo_deslioc:770

0.372% [des_dolprdel_des_functionsinst139
narze [l inempolaton_snaped_ interpokation_mod ins
0.355% B parscles_in_cell_pamcles_in_cellinstfizd
0.352% [ces_urag_gs_drag_fgsinstf9a1

0342% B cewvalues_cmewvalues insti116
0341% W chvallcontacl_chwallcortaclingd 143
nazew [cale_Sorce_dis_ cale_torce_d
035% B cfalide_cfsideinstrds
0.326% E grid_based_neighbor_search_gnd_based_neighbor_searchinstf2i4
0.313% [cale_force_des_cale_force_des mstrddg

0311% [dgtsv_DOTEVinstF.120

0302% [l e_mates_tea_biegs inst 11005

o2% B orag_fos_drag fgs.insttin

0.275% [chewalues_cinewvalues.instiid

0.275% B ctwallcortacl_ctwallcontactinstist

0273% [intermolation_interp_twod_scalar_irternotation_mod ins 1583

07y [tau_profin, AUFAFLEppE2E

0261% B Interoolsle_quanis_drag_tas instre4s

0.253% [cale_force_des_cale_force_desinstfi76

rara

—
\ P S (: NATIONAL ENSRCGY TECHNOLOGY LASORATORY

An obvious hotspot!

100 -
90
80
70
60
50
40
30
20
10

 Rest of code

M calc_force_des

m desgrid_neigh_build

BUB MUELLER

For our current work, we reproduced these timings with the latest code, a new benchmark
dataset and manual timers. We obtained similar results.

Two algorithmic sections of the code dominate the runtime:

* Neighbor Search
e Force Calculation

NATIONAL ENSRCY TECHNOLOGY LASORATORY

PITTSBURGH SUPERCOMPUTING CENTER

Potential?

If we could somehow accelerate these two routines appreciably, we would get signigicant
speedups for the overall code. Amdahl’s Law at work.

ax

pud

2X N “e'\g‘(\,

2, i deﬁg“\
Lo X 1 o0
3 SQG

NATIONAL ENSRCGY TECHNOLOGY LASORATORY

NV PSC

A Reasonable Approach

After some initial research it seemed likely that these routines would be amenable to
GPGPU type acceleration.

We concurrently looked into possible algorithms as well as the technical specifics of how
to implement them.

We had a high degree of confidence that we could implement both algorithms in low-level
GPU programming language (CUDA) that could deliver a performance improvement,
perhaps a very substantial one.

However, as we were beginning this project, a new approach to GPU programming was
finally reaching usability: the OpenACC standard. This has the potential to greatly mitigate
our disturbance to the standard MFIX distribution.

NATIONAL ENSRCGY TECHNOLOGY LASORATORY

NV PSC

Simplest Example: SAXPY on CPU

Single Precision Alpha X Plus Y (SAXPY) i1s a simple,
common operation. 1t i1s part of BLAS.

Fortran:
subroutine saxpy (A,X,Y,N)
real(4) :: A, X(N), Y(N)

integer :-: N, 1

do 1 = 1,N

X(1) = A* X(1) + Y(1)
enddo

end subroutine

void saxpy(float a, float* x, float* y, 1Int n){
int 1;
for(1 =0; 1 < n; ++1){

x[] = a*x[i] + y[il;

NV PSC

NATIONAL ENSRCGY TECHNOLOGY LASORATORY

CUDA C SAXPY Code

__global __ void saxpy_kernel(float a, float* x, float* y, iInt n

o/
e

~ Il =

n
i

}

void saxpy(float a, float* x, float* y, int n){
float *xd, *yd;
cudaMalloc((void**)&xd, n*sizeof(float));

cudaMalloc((void**)&yd, n*sizeof(float)); cudaMemcpy(xd, X,
n*sizeof(float),

m O mm

lockldx.x*blockDim.x + threadldx.x:
<

f = n) x[i] = a*x[i] + y[i]l;

cudaMemcpyHostToDevice);
cudaMemcpy(yd, y, n*sizeof(float),

cudaMemcpyHostToDevice);
saxpy_kernel<<< (n+31)/32, 32 >>>(a, xd, yd, n);
cudaMemcpy(x, xd, n*sizeof(float),

cudaMemcpyDeviceToHost);
cudaFree(xd); cudaFree(yd);

NV PSC

NATIONAL ENSRCGY TECHNOLOGY LASORATORY

CUDA Fortran SAXPY Code

module kmod
use cudafor
contains
attributes(global) subroutine saxpy kernel(A,X,Y,N)
real(4), device :-: A, X(N), Y(N)
integer, value :-: N
integer :: 1
1 = (blockidx%x-1)*blockdim%x + threadidx%x
ITC 1 <= N) X(i) = AXX(1) + Y(i)
end subroutine
end module

subroutine saxpy(A, X, Y, N)

use kmod

real(4) :: A, X(N), Y(N)

integer :-: N

real(4), device, allocatable, dimension(:):: &
Xd, Yd

allocate(Xd(N), Yd(N))

Xd = X(1:N)

Yd = Y(1:N)

call saxpy kernel<<<(N+31)/32,32>>>(A, Xd, Yd, N)

X(1:N) = Xd

deallocate(Xd, Yd)
end subroutine

NV PSC

NATIONAL ENSRCGY TECHNOLOGY LASORATORY

What a mess!

* We totally broke the structure of the old code.
—Do you think any non-CUDA programmers have a prayer dealing with this code?

* We have separate sections for the host code, and the GPU code.
—Certainly not ANSI standard.

* Where did these “32’s” and other mystery variables come from?

*Can we avoid doing this to the MFIX distribution?

NATIONAL ENSRCGY TECHNOLOGY LASORATORY

NV PSC

Answer: OpenACC

Fortran:

subroutine saxpy (A,X,Y,N)
real(4) :-: A, X(N), Y(N)
integer :-: N, 1

I1$acc parallel
do1 = 1,N
X(1) = A * X(i) + Y(I)
enddo

1$acc end parallel

end subroutine

void saxpy(float a, float* x, float* y, int n){
int i;
#pragma acc parallel
for(C 1 =0; 1 <n; ++1){

x[1] = a*x[1] + y[i];

NATIONAL ENSRCGY TECHNOLOGY LASORATORY

NV PSC

Maintenance Pros of OpenACC

 No separate code path (ideally), whereas CUDA is a “fork”.

We might not be able to achieve that on our first pass here as we want to
leverage an existing CUDA sort library.

* No GPU platform specifics by generation/vendor.
AMD/Intel not on board yet, but will be by OpenMP 4.0*

e Canlearn OpenACCin a day, CUDA takes at least several and is a moving target.

* OpenMP programmers, note how similar this paradigm is to standard multi-core
OpenMP. This is why OpenACC is due for integration into the OpenMP 4.0 standard,
likely in 2013.

NATIONAL ENSRCGY TECHNOLOGY LASORATORY

NV PSC

Risks of OpenACC

 Might not get full performance of CUDA.
— Worst case, we fall back on CUDA.

* Currently relying on beta compilers.
— Fortunately, we have a very close relationship with PGl on this product.
— Recently, we have become the leading edge site with nVidia on this.

* Not all of the specification is implemented.
— We think we have all the pieces for our algorithms now.
— Full implementation may take until 4Q12.

NATIONAL ENSRCGY TECHNOLOGY LASORATORY

NV PSC

Current Plan in a Nutshell

2. Create MFIX data structure skeleton to test prototypes
3. Find suitable replacement algorithms

4. Code replacement algorithms

5. Tune prototype code

6. Swap into MFIX

NV PSC

NATIONAL ENSRCGY TECHNOLOGY LASORATORY

PSC

Testbed for Neighbor Search

A light weight framework for implementing and testing a new neighbor list calculation

method

Consisting of a main driver (testNeighborSearch.f90) and supporting routines from

MFIX

Three functions of the testbed:

- Initializing the system geometry and other simulation parameters

- Generating the particle positions

- Calling a neighbor search routine to calculate the neighbor list. Currently, it calls
NSQUARE(), QUARDTREE, or OCTREE(), implemented in MFIX.

Steps forward:

- Implementing CELLLIST(), a new neighbor search routine

- Implementing openACC in CELLLIST()

- Placing CELLLIST(), capable of running on GPU, into MFIX

NATIONAL ENSRGY TECHNOLOGY LASORATORY

Current Plan in a Nutshell

3. Find suitable replacement algorithms
4. Code replacement algorithms
5. Tune prototype code

6. Swap into MFIX

NV PSC

NATIONAL ENSRCGY TECHNOLOGY LASORATORY

Combined Neighbor Search Algorithm

 The algorithm combines the following two techniques

— Neighbor lists approach: a neighbor list is built for each atom for an extended
cut off radiusr,=r.+vy

— Link-cell approach: atoms are binned into 3d cells of side length d =,

e The atoms are binned only every few timesteps for the purpose of forming neighbor
lists

— Significant time savings compared to other approaches
— Binsize d ~ 0.5r,

e A GPU implementation has been built into LAMMPS, a parallel molecular dynamics
simulation package developed in Sandia National Laboratory

 The radix sort routine in nVIDIA CUDPP library is used for sorting the atom and cell
index arrays

Brown et al, “Implementing Molecular Dynamics on Hybrid High Performance
Computers — Short Range Forces,” Computer Physics Communications, 183, 449 (2012)

NATIONAL ENSRCGY TECHNOLOGY LASORATORY

NV PSC

Follow-up

* We hope the standard distribution sports these changes by year end.

e [fyou find this OpenACC approach interesting, we hope to do a hands-on workshop
with PGl and nVidia at SC12. Please join us then (if not before).

NATIONAL ENSRCGY TECHNOLOGY LASORATORY

NV PSC

	GPGPU Acceleration of MFIX-DEM
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Simplest Example: SAXPY on CPU
	CUDA C SAXPY Code
	CUDA Fortran SAXPY Code
	What a mess!
	Answer: OpenACC
	Maintenance Pros of OpenACC
	Risks of OpenACC
	Current Plan in a Nutshell
	Testbed for Neighbor Search
	Current Plan in a Nutshell
	Combined Neighbor Search Algorithm
	Follow-up

