
GPGPU Acceleration of MFIX-DEM

John Urbanic

Pittsburgh Supercomputing Center

May 22, 2012

You’ve already heard something about MFIX.

I’m going to tell you about our work in progress:
accelerating MFIX using GPUs.

In particular, I’m going to focus on our novel approach of
using OpenACC to do so.

I believe many of you will find this a compelling
technology.

PSC Team:
 Nick Nystrom
 Anirban Jana
 Yang Wang
 John Urbanic

What I hope to communicate…

PSC has been working with NETL on MFIX for some time.

Last year we profiled MFIX in the course of some of that
work.

We used Tau, a sophisticated performance profiler with
countless perspectives on the performance data.

It also had considerable overhead and “interpretation”
issues.

Nevertheless, we were able to capture many useful
visualizations of the work distribution under various
conditions (datasets).

How we came to this point.

For our current work, we reproduced these timings with the latest code, a new benchmark
dataset and manual timers. We obtained similar results.

Two algorithmic sections of the code dominate the runtime:

• Neighbor Search
• Force Calculation

An obvious hotspot!

0
10
20
30
40
50
60
70
80
90

100

BUB MUELLER

Rest of code

calc_force_des

desgrid_neigh_build

If we could somehow accelerate these two routines appreciably, we would get signigicant
speedups for the overall code. Amdahl’s Law at work.

Potential?

After some initial research it seemed likely that these routines would be amenable to
GPGPU type acceleration.

We concurrently looked into possible algorithms as well as the technical specifics of how
to implement them.

We had a high degree of confidence that we could implement both algorithms in low-level
GPU programming language (CUDA) that could deliver a performance improvement,
perhaps a very substantial one.

However, as we were beginning this project, a new approach to GPU programming was
finally reaching usability: the OpenACC standard. This has the potential to greatly mitigate
our disturbance to the standard MFIX distribution.

A Reasonable Approach

Simplest Example: SAXPY on CPU

Single Precision Alpha X Plus Y (SAXPY) is a simple,
common operation. It is part of BLAS.

Fortran:

subroutine saxpy (A,X,Y,N)
 real(4) :: A, X(N), Y(N)
 integer :: N, I
 do i = 1,N
 X(i) = A * X(i) + Y(i)
 enddo
 end subroutine

C:
void saxpy(float a, float* x, float* y, int n){
 int i;
 for(i = 0; i < n; ++i){
 x[i] = a*x[i] + y[i];
 }
 }

CUDA C SAXPY Code

__global__ void saxpy_kernel(float a, float* x, float* y, int n
){

 int i;
 i = blockIdx.x*blockDim.x + threadIdx.x;
 if(i <= n) x[i] = a*x[i] + y[i];
}

void saxpy(float a, float* x, float* y, int n){
 float *xd, *yd;
 cudaMalloc((void**)&xd, n*sizeof(float));
 cudaMalloc((void**)&yd, n*sizeof(float)); cudaMemcpy(xd, x,

n*sizeof(float),
 cudaMemcpyHostToDevice);
 cudaMemcpy(yd, y, n*sizeof(float),
 cudaMemcpyHostToDevice);
 saxpy_kernel<<< (n+31)/32, 32 >>>(a, xd, yd, n);
 cudaMemcpy(x, xd, n*sizeof(float),
 cudaMemcpyDeviceToHost);
 cudaFree(xd); cudaFree(yd);
}

CUDA Fortran SAXPY Code

module kmod
 use cudafor
contains
 attributes(global) subroutine saxpy_kernel(A,X,Y,N)
 real(4), device :: A, X(N), Y(N)
 integer, value :: N
 integer :: i
 i = (blockidx%x-1)*blockdim%x + threadidx%x
 if(i <= N) X(i) = A*X(i) + Y(i)
 end subroutine
end module

 subroutine saxpy(A, X, Y, N)
 use kmod
 real(4) :: A, X(N), Y(N)
 integer :: N
 real(4), device, allocatable, dimension(:):: &
 Xd, Yd
 allocate(Xd(N), Yd(N))
 Xd = X(1:N)
 Yd = Y(1:N)
 call saxpy_kernel<<<(N+31)/32,32>>>(A, Xd, Yd, N)
 X(1:N) = Xd
 deallocate(Xd, Yd)
 end subroutine

What a mess!

• We totally broke the structure of the old code.

–Do you think any non-CUDA programmers have a prayer dealing with this code?

• We have separate sections for the host code, and the GPU code.
–Certainly not ANSI standard.

• Where did these “32’s” and other mystery variables come from?

•Can we avoid doing this to the MFIX distribution?

Answer: OpenACC

Fortran:

subroutine saxpy (A,X,Y,N)
 real(4) :: A, X(N), Y(N)
 integer :: N, I
!$acc parallel
 do i = 1,N
 X(i) = A * X(i) + Y(i)
 enddo
!$acc end parallel
 end subroutine

C:
void saxpy(float a, float* x, float* y, int n){
 int i;
 #pragma acc parallel
 for(i = 0; i < n; ++i){
 x[i] = a*x[i] + y[i];
 }
 }

Maintenance Pros of OpenACC

• No separate code path (ideally), whereas CUDA is a “fork”.
 We might not be able to achieve that on our first pass here as we want to

leverage an existing CUDA sort library.

• No GPU platform specifics by generation/vendor.
 AMD/Intel not on board yet, but will be by OpenMP 4.0*

• Can learn OpenACC in a day, CUDA takes at least several and is a moving target.

* OpenMP programmers, note how similar this paradigm is to standard multi-core
OpenMP. This is why OpenACC is due for integration into the OpenMP 4.0 standard,
likely in 2013.

Risks of OpenACC

• Might not get full performance of CUDA.
– Worst case, we fall back on CUDA.

• Currently relying on beta compilers.

– Fortunately, we have a very close relationship with PGI on this product.
– Recently, we have become the leading edge site with nVidia on this.

• Not all of the specification is implemented.

– We think we have all the pieces for our algorithms now.
– Full implementation may take until 4Q12.

Current Plan in a Nutshell

1. Profile code and find hotspots

2. Create MFIX data structure skeleton to test prototypes

3. Find suitable replacement algorithms

4. Code replacement algorithms

5. Tune prototype code

6. Swap into MFIX

Testbed for Neighbor Search

• A light weight framework for implementing and testing a new neighbor list calculation
method

• Consisting of a main driver (testNeighborSearch.f90) and supporting routines from
MFIX

• Three functions of the testbed:
- Initializing the system geometry and other simulation parameters
- Generating the particle positions
- Calling a neighbor search routine to calculate the neighbor list. Currently, it calls

NSQUARE(), QUARDTREE, or OCTREE(), implemented in MFIX.
• Steps forward:

- Implementing CELLLIST(), a new neighbor search routine
- Implementing openACC in CELLLIST()
- Placing CELLLIST(), capable of running on GPU, into MFIX

Current Plan in a Nutshell

1. Profile code and find hotspots

2. Create MFIX data structure skeleton to test prototypes

3. Find suitable replacement algorithms

4. Code replacement algorithms

5. Tune prototype code

6. Swap into MFIX

Combined Neighbor Search Algorithm

• The algorithm combines the following two techniques

– Neighbor lists approach: a neighbor list is built for each atom for an extended
cut off radius rs = rc + γ

– Link-cell approach: atoms are binned into 3d cells of side length d = rc

• The atoms are binned only every few timesteps for the purpose of forming neighbor
lists

– Significant time savings compared to other approaches

– Bin size d ~ 0.5rs

• A GPU implementation has been built into LAMMPS, a parallel molecular dynamics
simulation package developed in Sandia National Laboratory

• The radix sort routine in nVIDIA CUDPP library is used for sorting the atom and cell
index arrays

Brown et al, “Implementing Molecular Dynamics on Hybrid High Performance
Computers – Short Range Forces,” Computer Physics Communications, 183, 449 (2012)

Follow-up

• We hope the standard distribution sports these changes by year end.

• If you find this OpenACC approach interesting, we hope to do a hands-on workshop
with PGI and nVidia at SC12. Please join us then (if not before).

	GPGPU Acceleration of MFIX-DEM
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Simplest Example: SAXPY on CPU
	CUDA C SAXPY Code
	CUDA Fortran SAXPY Code
	What a mess!
	Answer: OpenACC
	Maintenance Pros of OpenACC
	Risks of OpenACC
	Current Plan in a Nutshell
	Testbed for Neighbor Search
	Current Plan in a Nutshell
	Combined Neighbor Search Algorithm
	Follow-up

