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What | hope to communicate...

You’ve already heard something about MFIX. DB: BUB02_00097.nc
Time:0.97048

I’'m going to tell you about our work in progress:
accelerating MFIX using GPUs.

In particular, I'm going to focus on our novel approach of
using OpenACC to do so.

| believe many of you will find this a compelling
technology.
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How we came to this point.
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Valug: Exclushe percent

PSC has been working with NETL on MFIX for some time. ==
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An obvious hotspot!
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For our current work, we reproduced these timings with the latest code, a new benchmark
dataset and manual timers. We obtained similar results.

Two algorithmic sections of the code dominate the runtime:

* Neighbor Search
e Force Calculation
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Potential?

If we could somehow accelerate these two routines appreciably, we would get signigicant
speedups for the overall code. Amdahl’s Law at work.
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A Reasonable Approach

After some initial research it seemed likely that these routines would be amenable to
GPGPU type acceleration.

We concurrently looked into possible algorithms as well as the technical specifics of how
to implement them.

We had a high degree of confidence that we could implement both algorithms in low-level
GPU programming language (CUDA) that could deliver a performance improvement,
perhaps a very substantial one.

However, as we were beginning this project, a new approach to GPU programming was
finally reaching usability: the OpenACC standard. This has the potential to greatly mitigate
our disturbance to the standard MFIX distribution.
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Simplest Example: SAXPY on CPU

Single Precision Alpha X Plus Y (SAXPY) i1s a simple,
common operation. 1t i1s part of BLAS.

Fortran:
subroutine saxpy (A,X,Y,N)
real(4) :: A, X(N), Y(N)

integer :-: N, 1

do 1 = 1,N

X(1) = A* X(1) + Y(1)
enddo

end subroutine

void saxpy( float a, float* x, float* y, 1Int n ){
int 1;
for( 1 =0; 1 < n; ++1 ){

x[] = a*x[i] + y[il;

NV PSC
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CUDA C SAXPY Code

__global __ void saxpy_kernel( float a, float* x, float* y, iInt n

o/
e

~ Il =

n
i

}

void saxpy( float a, float* x, float* y, int n ){
float *xd, *yd;
cudaMalloc( (void**)&xd, n*sizeof(float) );

cudaMalloc( (void**)&yd, n*sizeof(float) ); cudaMemcpy( xd, X,
n*sizeof(float),

m O mm

lockldx.x*blockDim.x + threadldx.x:
<

f = n ) x[i] = a*x[i] + y[i]l;

cudaMemcpyHostToDevice );
cudaMemcpy( yd, y, n*sizeof(float),

cudaMemcpyHostToDevice );
saxpy_kernel<<< (n+31)/32, 32 >>>( a, xd, yd, n );
cudaMemcpy( x, xd, n*sizeof(float),

cudaMemcpyDeviceToHost );
cudaFree( xd ); cudaFree( yd );

NV PSC
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CUDA Fortran SAXPY Code

module kmod
use cudafor
contains
attributes(global) subroutine saxpy kernel(A,X,Y,N)
real(4), device :-: A, X(N), Y(N)
integer, value :-: N
integer :: 1
1 = (blockidx%x-1)*blockdim%x + threadidx%x
ITC 1 <= N ) X(i) = AXX(1) + Y(i)
end subroutine
end module

subroutine saxpy( A, X, Y, N)

use kmod

real(4) :: A, X(N), Y(N)

integer :-: N

real(4), device, allocatable, dimension(:):: &
Xd, Yd

allocate( Xd(N), Yd(N) )

Xd = X(1:N)

Yd = Y(1:N)

call saxpy kernel<<<(N+31)/32,32>>>(A, Xd, Yd, N)

X(1:N) = Xd

deallocate( Xd, Yd )
end subroutine

NV PSC
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What a mess!

* We totally broke the structure of the old code.
—Do you think any non-CUDA programmers have a prayer dealing with this code?

* We have separate sections for the host code, and the GPU code.
—Certainly not ANSI standard.

* Where did these “32’s” and other mystery variables come from?

*Can we avoid doing this to the MFIX distribution?
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Answer: OpenACC

Fortran:

subroutine saxpy (A,X,Y,N)
real(4) :-: A, X(N), Y(N)
integer :-: N, 1

I1$acc parallel
do1 = 1,N
X(1) = A * X(i) + Y(I)
enddo

1$acc end parallel

end subroutine

void saxpy( float a, float* x, float* y, int n ){
int i;
#pragma acc parallel
for(C 1 =0; 1 <n; ++1 ){

x[1] = a*x[1] + y[i];
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Maintenance Pros of OpenACC

 No separate code path (ideally), whereas CUDA is a “fork”.

We might not be able to achieve that on our first pass here as we want to
leverage an existing CUDA sort library.

* No GPU platform specifics by generation/vendor.
AMD/Intel not on board yet, but will be by OpenMP 4.0*

e Canlearn OpenACCin a day, CUDA takes at least several and is a moving target.

* OpenMP programmers, note how similar this paradigm is to standard multi-core
OpenMP. This is why OpenACC is due for integration into the OpenMP 4.0 standard,
likely in 2013.
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Risks of OpenACC

 Might not get full performance of CUDA.
— Worst case, we fall back on CUDA.

* Currently relying on beta compilers.
— Fortunately, we have a very close relationship with PGl on this product.
— Recently, we have become the leading edge site with nVidia on this.

* Not all of the specification is implemented.
— We think we have all the pieces for our algorithms now.
— Full implementation may take until 4Q12.
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Current Plan in a Nutshell

2. Create MFIX data structure skeleton to test prototypes
3. Find suitable replacement algorithms

4. Code replacement algorithms

5. Tune prototype code

6. Swap into MFIX

NV PSC
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Testbed for Neighbor Search

A light weight framework for implementing and testing a new neighbor list calculation

method

Consisting of a main driver (testNeighborSearch.f90) and supporting routines from

MFIX

Three functions of the testbed:

- Initializing the system geometry and other simulation parameters

- Generating the particle positions

- Calling a neighbor search routine to calculate the neighbor list. Currently, it calls
NSQUARE(), QUARDTREE, or OCTREE(), implemented in MFIX.

Steps forward:

- Implementing CELLLIST(), a new neighbor search routine

- Implementing openACC in CELLLIST()

- Placing CELLLIST(), capable of running on GPU, into MFIX

NATIONAL ENSRGY TECHNOLOGY LASORATORY



Current Plan in a Nutshell

3. Find suitable replacement algorithms
4. Code replacement algorithms
5. Tune prototype code

6. Swap into MFIX

NV PSC

NATIONAL ENSRCGY TECHNOLOGY LASORATORY



Combined Neighbor Search Algorithm

 The algorithm combines the following two techniques

— Neighbor lists approach: a neighbor list is built for each atom for an extended
cut off radiusr,=r.+vy

— Link-cell approach: atoms are binned into 3d cells of side length d =,

e The atoms are binned only every few timesteps for the purpose of forming neighbor
lists

— Significant time savings compared to other approaches
— Binsize d ~ 0.5r,

e A GPU implementation has been built into LAMMPS, a parallel molecular dynamics
simulation package developed in Sandia National Laboratory

 The radix sort routine in nVIDIA CUDPP library is used for sorting the atom and cell
index arrays

Brown et al, “Implementing Molecular Dynamics on Hybrid High Performance
Computers — Short Range Forces,” Computer Physics Communications, 183, 449 (2012)
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Follow-up

* We hope the standard distribution sports these changes by year end.

e [fyou find this OpenACC approach interesting, we hope to do a hands-on workshop
with PGl and nVidia at SC12. Please join us then (if not before).
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