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Model Hierarchy

Direct numerical simulation (DNS)
fluid: Navier-Stokes equation
particles: Newton’s equations of motion
interaction: traction on the surface of the particles

Discrete element modeling (DEM)
fluid: Navier-Stokes equation +
particles: Newton’s equations of motion
interaction: empirical correlation

Two-fluid model (e.g., MFIX)

fluids: Navier-Stokes equation +
particles: Navier-Stokes-like equation +
__interaction: empirical correlation




Model Hierarchy

Direct numerical simulation (DNS)
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Discrete element modeling (DEM)
fluid: Navier-Stokes equation +
particles: Newton’s equations of motion
interaction: empirical correlation

Two-fluid model (e.g., MFIX)

fluids: Navier-Stokes equation +
particles: Navier-Stokes-like equation +
interaction: empirical correlation

Reynolds-averaged Two-fluid model
(RANS: RAT-F; FAT-F)

fluids: time-steady Navier-Stokes equation +
particles: time-steady Navier-Stokes-like equation +
interaction: empirical correlation
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MFIX Governing Equations
(Continuity equations)

Continuity equation for gas phase, g
O O

E( gpg)+ &(ggpgugi): 0

Continuity equation for solids phase, s:

0 0

E(Esps) a2 —(gspsusi)
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MFIX Governing Equations

(Momentum equations)
Momentum equations for gas phase, g:

0 0
a( PgY g )+a(ggpg U,V gi)

e Igsi i ggpg oF

Momentum equations for solids phase, s:
0 ®,
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Favre & Favre-like

Favre average: compressible gas

Favre, A., “Equations des gaz turbulents compressibles
|.- Formes générales,”

U E Ep U /p Journal de Mécanique 4, 361-390, 1965.
gl g g g

Favre, A., “Formulation of the statistical equations
of turbulent flows with variable density,”

in Studies in Turbulence, T.B. Gatski, S. Sarkar and C.O. Speziale eds.,
Springer-Verlag, 324-341, 1992.

Favre-like average: two-fluid
Uq =0 st i / P ik
=g o U (gsps)
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Notation

Dependent variables
€5:6¢:Ug Ui, P Favre like average
li=r RS, /gs, = Ug,/g

s~ si

Reynolds decomposition Favre decomposmon




|ldentities
.. following from the definitions

a()=7 =U; =U; =B/ =0  g(xt) =-&/(xt)
£,U5 =0 (Ug #0) £07 =0 (U7 #0)
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Reynolds/Favre Averaged
Gas Phase Continuity Equation

Instantaneous, local gas phase continuity equation

0 0
5( gpg)"‘ &(ggpgugi): 0
Take the time average

0 0

E(ggpg)+ &(ggpgugi): 0




Reynolds/Favre Averaged
Gas Phase Continuity Equation

Instantaneous, local gas phase continuity equation

9, 0
8’[( gpg)+&(‘9 nggl) 0

Take the time average

O 9,
5’[( gpg)_"&(g nggl) 0

Time averaging commutes with both temporal and spatial differentiation
0
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Reynolds/Favre Averaged
Gas Phase Continuity Equation

Instantaneous, local gas phase continuity equation

0 9,
ot (‘9 '09)—'_&(8 nggl) 0

Take the time average

0 0
o Gope)+ 5 (0ply )= 0

Time averaging commutes with both temporal and spatial differentiation
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Reynolds Averaged
Gas Phase Continuity Equation

; (pg 9)+§(pgggugl) 0

Expand ¢, g,:(g +& )(U +Ugl gU +/3‘775 +e,Uy

ELT e'u’

99'

_('09 §Q)+ aa_x(pg (89U9|+ES’JU!’J|)) 0

Compared with R/F averaged
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Continuity equations

Gas phase

0 0

E( gpg)+ 57( gnggi): 0

0 i3 %, el
= E(pg ‘99)_" &(/)g ggUgi): 0

Solids phase
0 0

E(gsps) =) _(gspsusi) =0
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Gas Phase Momentum Equations
Instantaneous, local gas phase momentum equations

O O
. p.U €40, U ;U
at( pg ) aXJ ( pg )
oP Oz
:_gga—;_l_ 6ng i Igsi+ggpggi

Take the time average (commutes with differentiation)
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Gas phase momentum equation
convective triple product - Favre average

ggUgU g = ig (Jgj +Ug )Eagi +Us’3’i) :
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Gas phase momentum equation
convective triple product - Favre average

é%UmUngng+U&¥gm+U;)‘v

i 3 T /4 /4 /4 /4
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time average
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Gas phase momentum equation
convective triple product - Favre average




Gas phase momentum equation
convective triple product - Reynolds average

eUgUg = (59 +€;)(Ugj +U;j)(LTgi+Uéi)
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Reynolds average cf. Reynolds/Favre average
Convective Term

Reynolds averaging
Ug Uy
g,Uy
&Ug U

Favre averaging
~ULU%=- ¢ ULU" /&,
__Uﬂul! e g Uﬂuﬂ/g
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Gas phase momentum equation
convective term

0
a—xj(‘ggpg Unggi)

0

i a(‘ggpg Unggi)

gas phase specific Reynolds stresses

s ity = {4 /4 = /4 " Sy
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Gas phase momentum equation
interaction term - an empirical 2-fluid closure

The general form Is written as

Igsi :gsﬂgs(u gi _Usi)
The coefficient is represented as

B = B () + B (x,1)
so that the time average can be written as
I_gsi = ,égs (SSU i — €U )+ ﬁés (gSU i —EU Si)

13 I gsi—2




Gas phase momentum equation
interaction term- cont

Igsi—l ﬂ (gSUgI _gsUsi)
Clearlys U, = e, U ~Si but U ; Is problematic .

g U . =(1—g\
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Gas phase momentum equation
interaction term- cont again

Examining the second term more thoroughly,
o= Aee U, =0, )= il +e 0, +ur =0, -u;)
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Gas phase momentum equation
interaction term- finally




Gas phase momentum equation
pressure term
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Gas phase momentum equation

stress term
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Gas Phase Momentum Equations
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Specific Gas Phase

Turbulence Kinetic Energy

L S ED 1 ” /4
ggkg = E‘ggugiugi

Total energy of gas flow

1 1 1 i "
EpgegU i i = Epggg (Ug )2 :Epggg (Ug e U9)2

:%pggg (Ug)2 +pg§g|zg

The first term is the energy density of the gas flow due to the
combined mean motion and turbulent motion correlated with the void fraction.

—~

The second term is the gas energy density due to

the residual turblent motion, /. e., that not correlated with voidage fluctuations.
Besnard, D.C., and F.H. Harlow, 1988.

9 g
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Gas Phase Turbulence Kinetic Energy

Rate of change of Rate of change of
turbulence kinetic energy per unit mass  turbulence Kinetic energy per unit mass
due to non-stationarity due to convection by the mean flow

g(pgggizg) 2 i(log_gEngj)

Rate of production of Transport of
turbulence kinetic energy turbulence kinetic energy
from the meag\flow gradient due to the turbulence itself
r A =¥

~ -
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\ 37 / N g U Rate of transfe_r of
Transport of Dissipation (gas phase) turbulence kinetic energy
turbulence kinetic energy to the granular phase

U to the pressure fluctuations



Correlations

Volume fraction fluctuation - velocity fluctuation correlations
gUy and U,

SiEdl

Specific gas phase turbulence Reynolds/Favre stresses

4 4 5T g 4 4
Drag related correlatlons
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Closures
velocity & volume fraction

Using an eddy - viscosity type turbulence model

V Vie

=
LN R g - T E s | o i
5gUgi X ——Vgg and eU. = Ve i

o o o

Ve,

These correlations are proportional, but opposite in sign
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Closures
velocity relations
Using the identities

~

U, =U, +e&U% /2, and U, =0, +£U/ /&,
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Closures
phase interaction

Retaining lowest order terms,

'nggsg( | U ) Iégsu_g”i

Using an eddy - wscosﬂy type turbulence model

U5 =-¢U} /g, = VE




Closures: phase interaction
ﬁgs has no analogue in single phase turbulence.

N.B., 3, (%)= B[, ()T, ()~ T, (x))

/ /
+5gUg,/g _53 S,




To Do List

Add granular temperature equation
Indentify closures

Extract dissipation, €

Closures for k & €

Look at energy cascade

Equation for the full stress tensor, T
Compare in detail with Reynolds formalism
Formulate drag terms for a chosen form

Develop closure relationships
... related to specific experimental data
(A NEVER ENDING TASK)




Thank you
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