

NATIONAL ENERGY TECHNOLOGY LABORATORY

MPPIC model implementation in MFIX: frictional solid-stress model

Rahul Garg^{1,2}, J. F. Dietiker^{1,3}, and M. Shahnam¹

1: National Energy Technology Laboratory

2: URS Corp.

3: WVURC

Comparison b/w different discrete methods

MPPIC
(CPFD-Barracuda, FLUENT DP-DPM)
Collisions modeled

Coarse-Grain DEM (Joseph and Patankar, IJMF'01) Direct collisions

 $D = 5^{1/3}$

MPPIC: current state-of-the-art

- √ "IT WORKS!!!" "IT'S FAST"
- ✓ Demonstrated to be a useful tool for quick turnaround simulations at pilot/device scales
- ✓ Several commercial implementations (Barracuda by CPFD, Dense-phase-DPM by ANSYS)
- ✓ Hard to ascertain and further develop sub-models (such as collision, friction, etc.)
 - ✓ Confusion among users regarding the exact form of models
- Objective of this study: understand, implement, and document MPPIC model in open-source MFIX code to probe its accuracy and speed

MPPIC model details

Carrier Phase: averaged Navier-Stokes equation

$$\frac{\partial(\varepsilon_{\mathsf{g}}\rho_{\mathsf{g}})}{\partial t} + \nabla \cdot (\varepsilon_{\mathsf{g}}\rho_{\mathsf{g}}\mathbf{v}_{\mathsf{g}}) = 0$$

$$\frac{D}{Dt}(\varepsilon_{g}\rho_{g}v_{g}) = \nabla \cdot \overline{\overline{S}}_{g} + \varepsilon_{g}\rho_{g}g - F_{drag}$$

Dispersed Phase

$$\frac{d\mathbf{X}_{\mathsf{p}}}{dt} = \mathbf{V}_{\mathsf{p}}$$

A_{coll} is the collision operator used to model collisions in the *kinetic* and *frictional* regimes.

Robust implementation of *frictional* regime A_{coll} is critical to stability of MPPIC model

$$m \frac{d\mathbf{V}_{p}}{dt} = m\mathbf{g} + \mathbf{F}_{p,drag} + m\mathbf{A}_{coll}$$

Particle trajectory evolution

$$m \frac{d\mathbf{V}_{p}}{dt} = m\mathbf{g} + \mathbf{F}_{p,drag} + m\mathbf{A}_{coll}$$

$$\mathbf{X}_{p}^{n+1} = \mathbf{X}_{p}^{n} + \Delta t \mathbf{V}_{p}^{n+1}$$
$$\mathbf{V}_{p}^{n+1} = \widetilde{\mathbf{V}}_{p} + \mathbf{V}_{p\tau}$$

$$\widetilde{\mathbf{V}}_{\mathrm{p}} = \mathbf{V}_{\mathrm{p}}^{n} + \left(\mathbf{g} + \frac{\mathbf{F}_{\mathrm{p,drag}}}{m}\right) \Delta t$$
 Drag+body force

$$\widetilde{\mathbf{V}}_{\mathsf{p}} \xrightarrow{A_{\mathsf{coll}}} \mathbf{V}_{\mathsf{p}\tau}$$
 Impulse velocity

How is A_{coll} applied?

$$\left(\mathbf{X}_{\mathsf{p}}^{n+1}, \mathbf{V}_{\mathsf{p}}^{n+1}\right) \xrightarrow{\mathsf{Wall B.C.}} \left(\mathbf{X}_{\mathsf{p}}^{*n+1}, \mathbf{V}_{\mathsf{p}}^{*n+1}\right)$$

A_{coll} implementation (frictional regime)

$$m \frac{d\mathbf{V}_{p}}{dt} = m\mathbf{g} + \mathbf{F}_{p,drag} + m\mathbf{A}_{coll}$$

$$X_{p}^{n+1} = X_{p}^{n} + \Delta t V_{p}^{n+1}$$

$$V_{p}^{n+1} = \widetilde{V}_{p} + V_{p\tau}$$

$$\widetilde{\mathbf{V}}_{\mathsf{p}} = \mathbf{V}_{\mathsf{p}}^{n} + \left(\mathbf{g} + \frac{\mathbf{F}_{\mathsf{p},\mathsf{drag}}}{m}\right) \Delta t$$

$$\widetilde{V}_p \xrightarrow{A_{\text{COII}}} V_{p\tau}$$

$$\left(\mathbf{X}_{\mathsf{p}}^{n+1}, \mathbf{V}_{\mathsf{p}}^{n+1}\right) \xrightarrow{\mathsf{Wall B.C.}} \left(\mathbf{X}_{\mathsf{p}}^{*n+1}, \mathbf{V}_{\mathsf{p}}^{*n+1}\right)$$

$$\chi = \varepsilon_{S}$$
 $\varepsilon_{S} \ge \varepsilon_{Scp}$

$$= 0 \quad \text{otherwise}$$

$$\delta \mathbf{V}_{\mathsf{p}\tau} = -\boldsymbol{\nabla}\chi$$

 χ is like a coloring function used to indicate the close-packed regions. $\delta \mathbf{u}_{\mathrm{p}\tau}$ is non-zero inside and at the interfaces of close-packed regions. It only indicates the direction of the correction due to close-packing.

A_{coll} implementation

$$V_{\mathrm{p}}^{n+1} = v_s - e_{1}^{\mathrm{fric}} (\widetilde{V}_{\mathrm{p}} - v_s)$$

$$V_{\mathbf{p}}^{n+1} = e_2^{\text{fric}} \widetilde{V_{\mathbf{p}}} \mathbf{\downarrow}$$

Case 2

$$V_{\mathbf{p}}^{n+1} = v_s - e_1^{\mathbf{fric}} (\widetilde{V_{\mathbf{p}}} - v_s) \bigvee V_{\mathbf{p}}^{n+1} = v_s - e_1^{\mathbf{fric}} (\widetilde{V_{\mathbf{p}}} - v_s) \bigvee else$$

Case 3

Case 4

if $\widetilde{V}_{\rm p} < v_{\rm s}$

$$v_s^{+1} = v_s^{-1} - e_1^{\mathrm{fric}} (\widetilde{V_{\mathrm{p}}} - v_s)$$

else

A_{coll} implementation (Summary)

$$\mathbf{V}_{\mathrm{rel}} = \widetilde{\mathbf{V}}_{\mathbf{p}} - \mathbf{v}_{\mathbf{s}}$$

 $V_{\rm rel}$: parcel's relative velocity wrt close-pack

$$\mathbf{V}_{\mathrm{p}}^{\mathbf{n+1}} = \mathbf{v_s} - \mathbf{e_1^{\mathrm{fric}}} \mathbf{V}_{\mathrm{rel}}; \quad \mathrm{if} \quad \mathbf{V}_{\mathrm{rel}}.(\delta \mathbf{V}_{\mathrm{p}\tau}) < \mathbf{0}$$

$$V_{\mathrm{p}}^{n+1} = v_s - e_1^{\mathrm{fric}} (\widetilde{V_{\mathrm{p}}} - v_s)$$
 else

SLOW DOWN

$$V_{\mathbf{p}}^{n+1} = e_2^{\text{fric}} \widetilde{V_{\mathbf{p}}}$$

Comparison with existing literature

$$m \frac{d\mathbf{V}_{p}}{dt} = m\mathbf{g} + \mathbf{F}_{p,drag} + m\mathbf{A}_{coll}$$

$$\mathbf{V}_{p}^{n+1} = \widetilde{\mathbf{V}}_{p} + \mathbf{V}_{p\tau}$$

$$\widetilde{\mathbf{V}}_{p} = \mathbf{V}_{p}^{n} + \left(\mathbf{g} + \frac{\mathbf{F}_{p,drag}}{m}\right) \Delta t$$

No inter-particle collision term so far

Snider, D. M., An incompressible 3-D MP-PIC model for dense particle flows, JCP (2001)

Comparison with existing literature

$$m \frac{d\mathbf{V}_{p}}{dt} = m\mathbf{g} + \mathbf{F}_{p,drag} + m\mathbf{A}_{coll}$$

$$\mathbf{V}_{\mathsf{p}}^{n+1} = \widetilde{\mathbf{V}}_{\mathsf{p}} + \mathbf{V}_{\mathsf{p}\tau}$$

$$\tau = \frac{P_{\rm S}\varepsilon_{\rm S}^{\beta}}{\max\left[\varepsilon_{\rm Scp} - \varepsilon_{\rm S}, \epsilon\left(1 - \varepsilon_{\rm S}\right)\right]} \quad \text{Isotropic inter-particle stress (Harris and Crighton)}$$

$$\delta \mathbf{V}_{\mathsf{p}\tau} = -\frac{\Delta t \nabla \tau}{\rho_{\mathsf{S}} \varepsilon_{\mathsf{S}}}$$

Decides the direction of solid-stress correction velocity

$$(\mathbf{\nabla} \tau).\mathbf{e}_{k} \leq 0$$

$$V'_{p\tau_{k}} = \min\left(\mathbf{e}_{k} \cdot \delta \mathbf{V}_{\mathsf{p}\tau}, (1+\gamma)(\mathbf{v}_{s} - \widetilde{\mathbf{V}}_{\mathsf{p}}) \cdot \mathbf{e}_{k}\right)$$

$$V_{p\tau_{k}} = \max\left(V'_{p\tau_{k}}, 0\right)$$

Matters mostly near close-packing, otherwise statistical noise!

Comparison with existing literature

$$m \frac{d\mathbf{V}_{p}}{dt} = m\mathbf{g} + \mathbf{F}_{p,drag} + m\mathbf{A}_{coll}$$

$$V_{p}^{n+1} = V_{p} + V_{p\tau}$$

$$\tau = \frac{P_{s}\varepsilon_{s}^{\beta}}{\max\left[\varepsilon_{s_{cp}} - \varepsilon_{s}, \epsilon\left(1 - \varepsilon_{s}\right)\right]}$$

$$\delta \mathbf{V}_{\mathsf{p}\tau} = -\frac{\Delta t \nabla \tau}{\rho_{\mathsf{S}} \varepsilon_{\mathsf{S}}}$$

WHAT DO THESE LIMITERS IMPLY?

$$\begin{aligned} &(\boldsymbol{\nabla}\tau).\mathbf{e}_{k} \leq \mathbf{0} \\ &V'_{p\tau_{k}} = \min\left(\mathbf{e}_{k} \cdot \delta \mathbf{V}_{\mathsf{p}\tau}, (\mathbf{1} + \gamma)(\mathbf{v}_{s} - \widetilde{\mathbf{V}}_{\mathsf{p}}) \cdot \mathbf{e}_{k}\right) \\ &V_{p\tau_{k}} = \max\left(V'_{p\tau_{k}}, \mathbf{0}\right) \end{aligned}$$

Explanation of limiters

Case 2

Case 3

Case 4

if $u_{\rm p} < U_{\rm p}$

$$u_{\mathrm{p}\tau} = (1+\gamma)(U_{\mathrm{p}} - u_{\mathrm{p}})$$
 else

$\mathbf{u}_{\mathsf{p}}^{n+1} = \widetilde{\mathbf{u}}_{\mathsf{p}} + \mathbf{u}_{\mathsf{p} au}$

$$\delta \mathbf{u}_{\mathsf{p} au} = -rac{\Delta t \mathbf{
abla} au}{
ho_{\mathsf{S}}arepsilon_{\mathsf{S}}}$$

DO NOTHING

Snider's model vs. the new model

$$V_{p}^{n+1} = \widetilde{V}_{p} + V_{p\tau}$$

$$\tau = \frac{P_{s}\varepsilon_{s}^{\beta}}{\max\left[\varepsilon_{s_{cp}} - \varepsilon_{s}, \epsilon\left(1 - \varepsilon_{s}\right)\right]}$$

$$\delta V_{p\tau} = -\frac{\Delta t \nabla \tau}{\rho_{s}\varepsilon_{s}}$$

$$\begin{split} &(\boldsymbol{\nabla}\tau).\mathbf{e}_{k} \leq \mathbf{0} \\ &V'_{p\tau_{k}} = \min\left(\mathbf{e}_{k} \cdot \delta \mathbf{V}_{\mathsf{p}\tau}, (\mathbf{1} + \gamma)(\mathbf{v}_{s} - \widetilde{\mathbf{V}}_{\mathsf{p}}) \cdot \mathbf{e}_{k}\right) \\ & \boldsymbol{V}_{p\tau_{k}} = \max\left(V'_{p\tau_{k}}, \mathbf{0}\right) \end{split}$$

$$\mathbf{V}_{\mathrm{rel}} = \widetilde{\mathbf{V}}_{\mathbf{p}} - \mathbf{v_s}$$

 $V_{\rm rel}$: parcel's relative velocity wrt close-pack

$$\mathbf{V}_{\mathrm{p}}^{\mathbf{n+1}} = \mathbf{v_s} - \gamma \mathbf{V}_{\mathrm{rel}}; \quad \mathrm{if} \quad \mathbf{V}_{\mathrm{rel}}.(\delta \mathbf{V}_{\mathrm{p} au}) < \mathbf{0}$$

Two parameter model: P_s and γ

Two parameter model: e_1^{fric} and e_2^{fric}

STILL DOESN'T WORK!

A simple case of particles sedimenting in a vertical channel blows up due to the inability of the frictional model to sustain specified close-packing

Fix?

Cases 1-4

$$\chi = \varepsilon_{S}$$
 $\varepsilon_{S} \ge \varepsilon_{S_{CP}}$
= 0 otherwise

$$\delta \mathbf{V}_{\mathsf{p}\tau} = -\boldsymbol{\nabla}\chi$$

$$\mathbf{V}_{\mathrm{rel}} = \widetilde{\mathbf{V}}_{\mathbf{p}} - \mathbf{v}_{\mathbf{s}}$$

$$V_{\mathrm{p}}^{\mathbf{n+1}} = v_{\mathbf{s}} - \frac{\mathbf{e_{1}^{fric}}}{\mathbf{V}_{\mathrm{rel}}};$$

if
$$\mathbf{V}_{\mathrm{rel}}.(\delta \mathbf{V}_{\mathrm{p}\tau}) < \mathbf{0}$$

Case 1b

if
$$\left| \widetilde{V}_{\mathrm{p}} \right| < \left| v_{\mathrm{s}} \right|$$

SLOW DOWN

$$V_{\rm p}^{n+1} = e_2^{\rm fric} \widetilde{V_{\rm p}}$$

Case 1a

$$\left| V_{\rm p} \right| <> \left| v_{\rm s} \right|$$

ALWAYS REBOUND

$$V_{\mathrm{p}}^{n+1} = -e_{1}^{\mathrm{fric}}\widetilde{V_{\mathrm{p}}}$$

Results in unconditionally stable solver (does not guarantee any results) Still a 2-parameter model

Other features/limitations/future development

- □ Specular reflections at wall
- No friction at the walls
- □ No collisions in the viscous regime
- ☐ Robust extension to cut-cell

Model development thought process

- ✓ Three problems were chosen: sedimentation, spouted bed, and uniformly fluidized bed
- ✓ Any frictional model or a wild guess was tested by running all three problems
 - ➤ Lot of times very encouraging results for one problem led to blow up of simulations for other problems
 - ➤ A stable model did not always imply a physically plausible model. The first model I tried was the most stable one but nothing really moved in that model either!
- ✓ The final model is a trade off between numerical stability and physics. There are many other variants of this model possible.....

Sample Problem 1: Kuiper's jet

Properties

Solids: $D_p = 0.05$ cm, $\rho_p = 2.6$ g/cm³ Total number of particles (DEM) = 36 million Total number of parcels (MPPIC) = 4,560 ~ 8000 particles per parcel

Gas: Air at standard conditions

Bed Dimension= (57x100x1.5) cm³ = (31x60x1) cells

No slip wall BC's for gas and free slip for solids phase mean velocity

Drag model: Wen & Yu / Ergun Pressure of bed weight = 7.1 kPa

Easiest to bubble, hardest to simulate stably

TFM vs MPPIC vs CPFD

$e_1^{\rm fric}=0.3,\,e_2^{\rm fric}=0.5$ Pressure Drop

- Both MFIX-PIC and CPFD exhibit different bubble frequency with CPFD giving the lowest bubble frequency
- ■The amplitude of oscillations is higher in CPFD implying prediction of higher pressure fluctuations for design purposes

- ■Under-prediction of pressure drop by 15% for the best case.
- •Pressure drop most sensitive to first frictional coefficient of restitution.
- Week dependence on second frictional coefficient of restitution
- Recommended values of 0.3-0.6 for both parameters
- **■COMPUTATIONAL WALL TIMES:** TFM (400 mins), and MPPIC (80 mins) on a single core.

Effect of frictional coefficient's of restitution

Sample Problem 2: uniformly fluidized

Properties

Solids: $D_p = 0.1$ cm, $\rho_p = 2.5$ g/cm³ Total number of particles (DEM) = 305 K Total number of parcels (MPPIC) = 16,000 ~ 20 particles per parcel

Gas: Air at standard conditions Fluidization velocity = 80 cm/s

box dimension = (10x50x2) cm³ = (20x100x4) cells

FREE slip wall BC's for both gas and solids phase mean velocity

Drag model: Wen &Yu / Ergun Pressure of bed weight = 1.96 kPa

Easiest to simulate, hardest to bubble!

DEM vs TFM vs MPPIC vs CPFD

Both MFIX-PIC and CPFD do not bubble much and as a result predict low variations in pressure drop (see next slide)

Pressure drop comparison

Extension to Cartesian Grid

- More work needed for robust extension of MPPIC model to cut-cell
 - Forward interpolation of gas-phase velocity field
 - Calculation of solid phase frictional pressure on the Eulerian grid followed by its forward interpolation
 - Backward estimation of mean fields

OSA

Conclusions/Observations

- MPPIC model implemented in open-source MFIX code
 - A new limiter based on physical arguments formulated for solid-stress model
- MPPIC model compared against other CFD models and existing commercial MPPIC model
- MPPIC models found to be in qualitative and limited quantitative agreements with the more accurate DEM model
- > Need to implement additional physical models for particle-particle and particle-wall interactions

Acknowledgments

This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research in advanced numerical simulation of multiphase flow under the RES contract DE-FE0004000.