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Comparison b/w different discrete methods 
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MPPIC: current state-of-the-art 

 “IT WORKS!!!” “IT’S FAST”  
 Demonstrated to be a useful tool for quick 

turnaround simulations at pilot/device scales 
 Several commercial implementations (Barracuda by 

CPFD, Dense-phase-DPM by ANSYS)  
 Hard to ascertain and further develop sub-models 

(such as collision, friction, etc.) 
Confusion among users regarding the exact form of 

models 
 Objective of this study: understand, implement, and 

document MPPIC model in open-source MFIX code 
to probe its accuracy and speed  
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MPPIC model details 

Carrier Phase: averaged Navier-Stokes equation 

Dispersed Phase 

Acoll is the collision operator used to 
model collisions in the k inetic and 
frictional regimes. 
 
Robust implementation of frictional 
regime Acoll is critical to stability of  
MPPIC model 
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Particle trajectory evolution 

How is Acoll applied ? 

Impulse velocity 

Drag+body force 
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Acoll implementation (frictional regime) 

     is like a coloring function used 
to indicate the close-packed 
regions.           is non-zero inside 
and at the interfaces of close-
packed regions. It only indicates 
the direction of the correction due 
to close-packing. 
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Acoll implementation 
Case 1 Case 2 Case 3 Case 4 
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Acoll implementation (Summary) 
Case 1 

+ 

Case 1b 
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Comparison with existing literature 

Snider, D. M., An incompressible 3-D MP-PIC model for dense particle flows, JCP (2001) 

No inter-particle collision term so far 
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Isotropic inter-particle stress (Harris and Crighton) 

Decides the direction of solid-stress correction velocity 

Matters mostly near close-packing, otherwise statistical noise! 

Comparison with existing literature 
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Comparison with existing literature 
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Case 1 Case 2 Case 3 Case 4 

Explanation of limiters 
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Snider’s model vs. the new model 

Case 1b

+
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STILL DOESN’T WORK! 

A simple case of particles sedimenting in a vertical channel 
blows up due to the inability of the frictional model to sustain 

specified close-packing 
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Fix? 
Case 1b 

+ 

Case 1a 

+ 

Cases 1-4 

Results in unconditionally stable solver (does not guarantee any results) 
Still a 2-parameter model 
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Other features/limitations/future 
development 

 Specular reflections at wall 
 No friction at the walls 
 No collisions in the viscous regime 
 Robust extension to cut-cell 
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Model development thought process 

 Three problems were chosen: sedimentation, 
spouted bed, and uniformly fluidized bed 

 Any frictional model or a wild guess was tested by 
running all three problems 
Lot of times very encouraging results for one problem 

led to blow up of simulations for other problems 
A stable model did not always imply a physically 

plausible model. The first model I tried was the most 
stable one but nothing really moved in that model 
either! 

 The final model is a trade off between numerical 
stability and physics. There are many other variants 
of this model possible….. 
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Sample Problem 1: Kuiper’s jet 

Properties 

Solids: Dp = 0.05 cm, ρp = 2.6 g/cm3 

Total number of particles (DEM) = 36 million 
Total number of parcels (MPPIC) = 4,560  ~ 8000 
particles per parcel 
Gas: Air at standard conditions 

Bed Dimension= (57x100x1.5) cm3 ≡ (31x60x1) cells 

No slip wall BC’s for gas and free slip for solids 
phase mean velocity  
Drag model: Wen & Yu / Ergun  
Pressure of bed weight = 7.1 kPa 

10 m/s 
0.25 m/s 

Kuipers, J.A.M., A two-fluid micro balance of fluidized bed. PhD thesis, 1990 

Easiest to bubble, hardest to simulate stably 
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TFM vs MPPIC vs CPFD 

TFM MFIX-PIC CPFD 



20 

Pressure Drop 

Both MFIX-PIC and CPFD exhibit different bubble 
frequency with CPFD giving the lowest bubble 
frequency 
The amplitude of oscillations is higher in CPFD 
implying prediction of higher pressure fluctuations 
for design purposes 
 

Under-prediction of pressure drop by 15% for the 
best case. 
Pressure drop most sensitive to first frictional 
coefficient of restitution. 
Week dependence on second frictional coefficient 
of restitution 
Recommended values of 0.3-0.6 for both 
parameters 
COMPUTATIONAL WALL TIMES: TFM (400 
mins), and MPPIC (80 mins) on a single core. 
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Effect of frictional coefficient’s of restitution 

The model’s 
stability does not get 
affected by the first 
coefficient of 
restitution. 
Recommended 
values of 0.3-0.6 for 
both parameters 
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Sample Problem 2: uniformly fluidized 

Properties 

Solids: Dp = 0.1 cm, ρp = 2.5 g/cm3 

Total number of particles (DEM) = 305 K 
Total number of parcels (MPPIC) = 16,000  ~ 20 particles 
per parcel  
Gas: Air at standard conditions 
Fluidization velocity = 80 cm/s 
box dimension = (10x50x2) cm3 ≡ (20x100x4) cells  

FREE slip wall BC’s for both gas and solids phase 
mean velocity  

Drag model: Wen &Yu / Ergun  
Pressure of bed weight = 1.96 kPa 

Easiest to simulate, hardest to bubble! 
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DEM vs TFM vs MPPIC vs CPFD 

Both MFIX-PIC and CPFD do not bubble much and as a result predict 
low variations in pressure drop (see next slide) 

DEM MFIX-PIC CPFD TFM 
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Pressure drop comparison 
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Extension to Cartesian Grid 

 More work needed for robust extension of 
MPPIC model to cut-cell 
 Forward interpolation of gas-phase velocity field 
 Calculation of solid phase frictional pressure on 

the Eulerian grid followed by its forward 
interpolation 

 Backward estimation of mean fields 
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Conclusions/Observations 

 MPPIC model implemented in open-source MFIX 
code 
 A new limiter based on physical arguments 

formulated for solid-stress model  
 MPPIC model compared against other CFD models 

and existing commercial MPPIC model 
 MPPIC models found to be in qualitative and limited 

quantitative agreements with the more accurate DEM 
model 

 Need to implement additional physical models for 
particle-particle and particle-wall interactions 
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