The Effect of Model Parameters of the Soft-Sphere Scheme on Particle-Particle Collisions

NETL Multiphase flow Conference 2012
May 22nd -24th ,2012

Samuel Musong
Zhi-Gang Feng, E.E. Michaelides

Supported by
DOE-NETL (Grant #:DE-NT0008064), and NSF
Outline

• Rationale
• The Importance of the RDPM/IBM
• Soft-Sphere Model
• How to determine k_n and η_n
• Effects on Drafting Kissing and Tumbling
• Conclusions
Rationale

• Eulerian and Lagrangian systems need a scheme to model particle-particle or particle-wall collisions.

• The soft-sphere scheme is the most common. How do we choose the spring stiffness and damping coefficient in a soft-sphere collision model?

• How do the collision parameters affect the particle dynamics when particles collide?
Resolved Discrete Particle Method (RDPM with IBM)

- Existing collision models are:
 - Hard sphere
 - event driven → one collision at a time
 - Soft sphere
 - time driven → multiple collisions at a time
 - Repulsive force
 - Lubrication force

- The Discrete particle method (DPM) a.k.a. DNS has the capability of handling particle-particle/wall collisions unlike MFIX and DEM

- The RPDM/IBM approach is advantageous because:
 - it effectively handles overlap
 - No regridding is required for moving particles.

Courtesy: A combined soft-sphere collision / IBM for Resolved simulations of particulate flows Wim-Paul Breugem Laboratory for Aero & Hydrodynamics
Soft-Sphere collision model

- Its simplest form is the **linear spring-dashpot model**
- Allows particles to slightly overlap ($<0.5\% \, d$).

For two particles i and j, the force balance for collisions in the normal direction is:

$$f_{ij}^n = -k_n \delta_{ij}^n - \eta_n v_{ij}^n$$
Soft-Sphere Model Parameters

\(\delta_{ij}^n \): normal overlap displacement
\(k_n \): normal Spring Stiffness
\(\eta_n \): normal damping coefficient
\(v_{ij}^n \): normal relative velocity

The reduced mass is given as:

\[
m_{ij} = \left(\frac{1}{m_i} + \frac{1}{m_j} \right)^{-1}
\]

\[
f_{ij}^n = -k_n \delta_{ij}^n - \eta_n v_{ij}^n
\]

\[
v_{ij}^n = (v_{ij} \cdot n_{ij}) n_{ij}
\]

We can do same for collisions in the tangential direction
For dry collisions (in air) the following analytical solution is obtained, Hoomans et al. [1]

\[\eta_n = \begin{cases}
-\frac{2 \ln(e_n)}{\sqrt{\pi^2 + \ln^2(e_n)}} \sqrt{m_{ij} k_n} & \text{if } e_n \neq 0 \\
\frac{\pi^2}{\ln(e_n)} 2 \sqrt{m_{ij} k_n} & \text{if } e_n = 0
\end{cases} \]

\[e_n: \text{the normal coefficient of restitution} \]

\[\eta_n: \text{in terms of } k_n \text{ and } e_n \]

the normal contact time is expressed as:

\[t_{con,n} = \sqrt{m_{ij} \frac{\pi^2 + \ln^2(e_n)}{k_n}} = N_c \delta t \]

\[N_c: \text{the number of computational time steps with } N_c > 1 \]

\[\delta t: \text{time step with } \delta t < t_{con,n} \]

Soft Sphere Collision Parameters N_c and e_n

$$k_n = m_{ij} \frac{\pi^2 + \ln^2(e_n)}{(N_c \delta t)^2}$$

In **dry collisions** the contact force dominates the drag force and so can be neglected.

$$\eta_n = - \frac{2m_{ij} \ln(e_n)}{N_c \delta t}$$

Dry collisions can be used to approximate collisions in a viscous fluid.

N_c and e_n are now the inputs that link η_n and k_n.
How to determine k_n and η_n for a collision process

• Experimental methods, Muller et al. [2]

 $k_n = 3 \times 10^5 \sim 10^6$ dyn/cm
 - gives a very wide range of results for k_n
 - Uses k_n and e_n graphically to find η_n

• Trial and Error methods, Xu and Yu [3]
 - less elegant

• Method being introduced:
 Using N_c and e_n with δt given to find k_n and η_n
 - (more elegant)

Experimental/Graphical Approach

<table>
<thead>
<tr>
<th>k_n (dyn/cm)</th>
<th>$\eta_n(e_n=0)$ (dyn s/cm)</th>
<th>$\eta_n(e_n=0.8)$ (dyn s/cm)</th>
<th>$t_{cont,n}$ (s)</th>
<th>$\delta t=0.25\times10^{-3}$</th>
<th>$\delta t=0.5\times10^{-3}$</th>
<th>$\delta t=1\times10^{-3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>19.90</td>
<td>1.41</td>
<td>0.3134</td>
<td>1254</td>
<td>626.82</td>
<td>313.41</td>
</tr>
<tr>
<td>1000</td>
<td>62.94</td>
<td>4.46</td>
<td>0.0991</td>
<td>396</td>
<td>198.22</td>
<td>99.11</td>
</tr>
<tr>
<td>5000</td>
<td>140.73</td>
<td>9.97</td>
<td>0.0443</td>
<td>177</td>
<td>88.65</td>
<td>44.32</td>
</tr>
<tr>
<td>50000</td>
<td>445.03</td>
<td>31.53</td>
<td>0.0140</td>
<td>56</td>
<td>28.03</td>
<td>14.02</td>
</tr>
<tr>
<td>100000</td>
<td>629.36</td>
<td>44.59</td>
<td>0.0099</td>
<td>40</td>
<td>19.82</td>
<td>9.91</td>
</tr>
<tr>
<td>500000</td>
<td>1407.30</td>
<td>99.71</td>
<td>0.0044</td>
<td>18</td>
<td>8.86</td>
<td>4.43</td>
</tr>
<tr>
<td>1000000</td>
<td>1990.22</td>
<td>141.01</td>
<td>0.0031</td>
<td>13</td>
<td>6.27</td>
<td>3.13</td>
</tr>
<tr>
<td>10000000</td>
<td>6293.64</td>
<td>445.91</td>
<td>0.0010</td>
<td>4</td>
<td>1.98</td>
<td>0.99</td>
</tr>
</tbody>
</table>
η_n is obtained graphically from k_n and e_n ($0 \sim 0.9$)

The range of k_n that is of interest is $(10^5 \sim 10^6)$ dyn/cm
Relationship between δt and k_n

$t_{\text{cont},n}$ vs. k_n

δt vs. k_n
Finding η_n and k_n from N_c, e_n

1. Predictions from the **non-linear Hertz contact theory** are used to get the **lower limit** of the contact time $(N_c \delta t \sim 10^{-9}s)$

$$K = \frac{8E}{15(1-\sigma^2)} \sqrt{\frac{R_i R_j}{R_i + R_j}} \quad t_{con,n} = 2.94 \left[\frac{m_{ij}}{K^2 v_{n,ij}^n} \right]^{\frac{1}{5}} = N_c \delta t$$

E is the Young’s modulus and σ is the Poisson's ratio

2. From the discussion of Van der Hoef et al. [4]

- Choose $(N_c \delta t)$ **not too large** to allow severe overlapping between particles
- Choose $(N_c \delta t)$ **not too small** to accurately resolve collision in time (inaccuracy)

First, we use stability/convergence tests to find a value for δt

We vary N_c to find a range that satisfies the above limits

Relationship between η_n/k_n and N_c for different time steps

k_n vs N_c

η_n vs N_c
Relationship between η_n / k_n and e_n for different N_c's

k_n vs e_n

η_n vs e_n
Effects of the Collision scheme on Drafting Kissing and Tumbling (DKT)

What is DKT?

During Sedimentation particles experience DKT

- Drafting ⇒ Attraction due to low pressure
- Kissing ⇒ Repeated collisions
- Tumbling ⇒ Rolling on each other

Effect of Collision Parameters on DKT

To study k_n and DKT we use:

- $k_n = 1000, \ 5 \times 10^4, \ 5 \times 10^5$ dyn/cm
- $\eta_n = 100$ dyn s/cm

To study η_n and DKT we use:

- $\eta_n = 0, \ 50, \ 100$ dyn s/cm
- $k_n = 50000$ dyn/cm

The results show that as k_n and η_n decrease the softer the collisions get and the longer the kissing process.

$\rho_p = 1120$ kg/m3

$\rho_f = 962$ kg/m3

$\mu = 0.913$ Ns/m2

$d_p = 15$ mm
Results: Settling velocity and DKT

Particle settling velocity for different k_n

Particle settling velocity for different η_n
Results: Settling Trajectory and DKT

Particle settling trajectory at different k_n

Particle settling trajectory for different η_n
Spring Stiffness and DKT-video

\[k_n = 1000 \] \hspace{1cm} \[k_n = 50000 \] \hspace{1cm} \[k_n = 500000 \]
Damping Coefficient and DKT-video

\[\eta_n = 0 \]
\[\eta_n = 50 \]
\[\eta_n = 100 \]
Refining the range of k_n

We could by trial and error find the range:

$$5000 \leq k_n \leq 10^5 \text{ dyn/cm}$$

for $\eta_n = 150 \text{ dyn s/cm}$

The change in DKT with k_n was insignificant

Particle settling velocity for

$$5000 \leq k_n \leq 100,000$$
Overlap and Contact time in DKT: refining range with N_c

Periodic kissing increases with k_n

For very small N_c (large k_n) the model approaches a hard sphere scheme with no overlap.

The choice of N_c is in the range: $8 < N_c < 15$ since for this range

Overlap $= \%$diameter $< 0.5\%$ of diameter

<table>
<thead>
<tr>
<th>N_c</th>
<th>k_n</th>
<th>η_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>160142.35</td>
<td>171.60</td>
</tr>
<tr>
<td>10</td>
<td>102491.10</td>
<td>137.28</td>
</tr>
<tr>
<td>12</td>
<td>71174.37</td>
<td>114.39</td>
</tr>
</tbody>
</table>

There is a great degree of agreement with the range that was used in trial and error: $5000 \leq k_n \leq 10^5$ dyn/cm for $\eta_n = 150$ dyn s/cm
Conclusions

• k_n and η_n decrease with the time step δt

• Increasing k_n (decreasing N_c) increases the kissing process

• A graphical approach gives a foreknowledge of the range without experiments

• Two main approaches to choose the soft-sphere collision parameters:
 1. given k_n and e_n to find N_c and δt
 2. given δt we can use N_c to find k_n and η_n which is more elegant
Questions?