The Effect of Model Parameters of the Soft-Sphere Scheme on Particle-Particle Collisions

NETL Multiphase flow Conference 2012 May 22nd -24th ,2012

Samuel Musong Zhi-Gang Feng, E.E. Michaelides

Supported by DOE-NETL (Grant #:DE-NT0008064), and NSF

Outline

- Rationale
- The Importance of the RDPM/IBM
- Soft-Sphere Model
- How to determine k_n and η_n
- Effects on Drafting Kissing and Tumbling
- Conclusions

Rationale

 Eulerian and Lagrangian systems need a scheme to model particle-particle or particle-wall collisions.

 The soft-sphere scheme is the most common. How do we choose the spring stiffness and damping coefficient in a soft-sphere collision model?

 How do the collision parameters affect the particle dynamics when particles collide?

Resolved Discrete Particle Method (RDPM with IBM)

- Existing collision models are:
 - Hard sphere
 - ❖ event driven → one collision at a time
 - Soft sphere
 - ❖time driven → multiple collisions at a time
 - Repulsive force
 - Lubrication force
- The Discrete particle method (DPM) a.k.a. DNS has the capability of handling particle-particle/wall collisions unlike MFIX and DEM

Fixed Eulerian grid & Moving Lagrangian

Courtesy: A combined soft-sphere collision / IBM for Resolved simulations of particulate flows Wim-Paul Breugem Laboratory for Aero & Hydrodynamics

- The RPDM/IBM approach is advantageous because:
 - it effectively handles overlap
 - No regridding is required for moving particles.

Soft-Sphere collision model

- Its simplest form is the linear spring-dashpot model
- Allows particles to slightly overlap (<0.5% d).

For two particles i and j, the force balance for collisions in the normal direction is:

$$f^{n}_{ij} = -k_{n} \delta^{n}_{ij} - \eta_{n} v^{n}_{ij}$$

Soft-Sphere Model Parameters

 δ^{n}_{ii} :normal overlap displacement

 k_{n} :normal Spring Stiffness

 η_n :normal damping coefficient

 v^n_{ii} :normal relative velocity

$$f^{n}_{ij} = -k_{n} \delta^{n}_{ij} - \eta_{n} v^{n}_{ij}$$

$$v^{n}_{ij} = (v_{ij} \cdot n_{ij})n_{ij}$$

The reduced mass is given as:

$$m_{ij} = \left(\frac{1}{m_i} + \frac{1}{m_j}\right)^{-1}$$

We can do same for collisions in the tangential direction

Soft-Sphere Model Parameters cont.

For dry collisions (in air) the following analytical solution is obtained ,Hoomans et al. [1]

$$\eta_n = \begin{cases} \frac{-2\ln(e_n)\sqrt{m_{ij}k_n}}{\sqrt{\pi^2 + \ln^2(e_n)}} & \text{if} \quad e_n \neq 0\\ 2\sqrt{m_{ij}k_n} & \text{if} \quad e_n = 0 \end{cases}$$

 e_n : the normal coefficient of restitution

 η_n : in terms of k_n and e_n

the normal contact time is expressed as:

$$t_{conn} = \sqrt{m_{ij} \frac{\pi^2 + \ln^2(e_n)}{k_n}} = N_c \delta t$$

 N_c : the number of computational time steps with $N_c > 1$

 δt : time step with $\delta t < t_{con,n}$

Soft Sphere Collision Parameters N_c and e_n

$$k_n = m_{ij} \frac{\pi^2 + \ln^2(e_n)}{\left(N_c \delta t\right)^2}$$

In dry collisions the contact force dominates the drag force and so can be neglected

$$\eta_n = -\frac{2m_{ij}ln(e_n)}{N_c \delta t}$$

dry collisions can be used to approximate collisions in a viscous fluid

 N_c and e_n are now the inputs that link η_n and k_n

How to determine k_n and η_n for a collision process

• Experimental methods, Muller et al. [2]

```
k_n = 3x10^5 \sim 10^6 \text{ dyn/cm}
```

- ❖ gives a very wide range of results for k_n
- \clubsuit Uses \mathbf{k}_n and \mathbf{e}_n graphically to find $\mathbf{\eta}_n$
- Trial and Error methods, Xu and Yu [3]
 - less elegant
- Method being introduced:

Using N_c and e_n with δt given to find k_n and η_n

❖(more elegant)

Experimental/Graphical Approach

k _n	$\eta_n(e_n=0)$	$\eta_{n}(e_{n}=0.8)$	t _{cont,n}	N _c		
dyn/cm	dyn s/cm	dyn s/cm	S	δt=0.25E-3	δt=0.5E-3	δt=1E-3
100	19.90	1.41	0.3134	1254	626.82	313.41
1000	62.94	4.46	0.0991	396	198.22	99.11
5000	140.73	9.97	0.0443	177	88.65	44.32
50000	445.03	31.53	0.0140	56	28.03	14.02
100000	629.36	44.59	0.0099	40	19.82	9.91
500000	1407.30	99.71	0.0044	18	8.86	4.43
1000000	1990.22	141.01	0.0031	13	6.27	3.13
10000000	6293.64	445.91	0.0010	4	1.98	0.99

Finding η_n from k_n , e_n

 η_n is obtained graphically from k_n and e_n (0 ~ 0.9)

The range of k_n that is of interest is $(10^5 \sim 10^6)$ dyn/cm

Relationship between δt and k_n

Finding η_n and k_n from Nc, e_n

1. Predictions from the <u>non-linear</u> Hertz contact theory are used to get the lower limit of the contact time $(N_c \delta t \sim 10^{-9} s)$

$$K = \frac{8E}{15(1-\sigma^{2})} \sqrt{\frac{R_{i}R_{j}}{R_{i}+R_{j}}} \qquad t_{con,n} = 2.94 \left[\frac{m_{ij}}{K^{2}v_{ij}^{n}}\right]^{\frac{1}{5}} = N_{c}\delta t$$

E is the Young's modulus and σ is the Poisson's ratio

- 2. From the discussion of Van der Hoef et al. [4]
 - Choose $(N_c \delta t)$ not too large to allow severe overlapping between particles
 - Choose $(N_c \delta t)$ not too small to accurately resolve collision in time (inaccuracy)

First, we use stability/convergence tests to find a value for δt We vary N_c to find a range that satisfies the above limits

Relationship between η_n/k_n and N_c for different time steps

Relationship between η_n / k_n and e_n for different Nc's

Effects of the Collision scheme on Drafting Kissing and Tumbling (DKT)

What is DKT?

During Sedimentation particles experience DKT

- Drafting ⇒Attraction due to low pressure
- Kissing ⇒ Repeated collisions
- Tumbling ⇒ Rolling on each other

Effect of Collision Parameters on DKT

To study k_n and DKT we use:

$$k_n = 1000$$
, $5x10^4$, $5x10^5$ dyn/cm $\eta_n = 100$ dyn s/cm

To study η_n and DKT we use :

$$\eta_n = 0$$
, 50, 100 dyn s/cm $k_n = 50000$ dyn /cm

The <u>results</u> show that as k_n and η_n decrease the softer the collisions get and the longer the kissing process

 ρ_p =1120 kg/m3 ρ_f =962 kg/m3 μ = 0.913Ns/m2 d_p =15 mm

Results: Settling velocity and DKT

Particle settling velocity for different k_n

Particle settling velocity for different η_n

Results: Settling Trajectory and DKT

Particle settling trajectory at different k_n

Particle settling trajectory for different η_n

Spring Stiffness and DKT-video

Damping Coefficient and DKT-video

Refining the range of k_n

We could by trial and error find the range:

 $5000 \le k_n \le 10^5 \text{dyn /cm}$ for $\eta_n = 150 \text{ dyn s/cm}$

The change in DKT with k_n was insignificant

Particle settling velocity for $5000 \le k_n \le 100,000$

Overlap and Contact time in DKT: refining range with N_c

Periodic kissing increases with k_n For very small N_c (large k_n) the model approaches a hard sphere scheme with no overlap

The choice of N_c is in the range:

 $8 < N_c < 15$ since for this range

Overlap= %diameter < 0.5% of diameter

N _c	k _n	η_{n}		
8	160142.35	171.60		
10	102491.10	137.28		
12	71174.37	114.39		

Gap width [% diameter] vs time

There is a great degree of agreement with the range that was used in trial and error: $5000 \le k_n \le 10^5$ dyn/cm for $\eta_n = 150$ dyn s/cm

Conclusions

- k_n and η_n decrease with the time step δt
- Increasing k_n (decreasing N_c) increases the kissing process
- A graphical approach gives a foreknowledge of the range without experiments
- Two main approaches to choose the soft-sphere collision parameters:
 - 1. given k_n and e_n to find N_c and δt
 - 2. given δt we can use N_c to find k_n and η_n which is more elegant

Questions?

