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Regenerable MgO-Based Sorbent

CO, Capture Reactions
MgO + CO, = MgCO,

MgO + CO, == MgCO,

Water-Gas-Shift Reaction
CO+H,0O = CO,+H,

Absorption

Regeneration

100

10

Pco2, atm

0.1

0.01

_—

A

i
Absorption Advance d Power Plant
MgO+CO2 —» MgCO3

wé

Decomposition

MgCO3 — MgO+CO2

e

250

300 350

Temp,’C

400

450

500



Experiments:CO2 Capture & Sorbent Regeneration
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Two-Zone Expanding Grain Reaction Rate
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Governing Equations

Mass balance around the particle for reactant gas (i.e. CO,)
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Model Fit to Experimental Data
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Model Fit to Experimental Data
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Packed-Bed Tests
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Packed-Bed Results
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Numerical Modeling

Species Conservation Equations

For heterogeneous reactive systems: Conservation of species in each phase

0
E(‘ggpg yi)+v'(8gpgvg yl)

R;is the heterogeneous reaction rate

An Ideal reaction model for CFD applications should:
Capture the real physics
Not increase the CPU time significantly
Be easy to implement in CFD codes

Grain Model:
Captures the real physics
- Is an implicit model (needs 2 additional equations)
- Increases CPU time
- Is not easy to implement in commercial CFD codes



Governing Equations

Mass balance around the particle for reactant gas (i.e. CO,)
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Two-Zone Variable Diffusivity Shrinking Core Model

with Expanding Product Layer
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Key Assumptions

1- There are two distinct reactive zones inside the particles

2- Process is controlled by both surface reaction and product
layer diffusion

3- There is an Expanding product layer I, = rp',?i/(l— X)+ZX

4- Effective product layer diffusivity is a function of conversion
due to expansion ( and increased tortuosity )

D, = Dy (~aX )

. : : : E
5- Intrinsic reaction rate is Arrhenius type k., =k, eXp(—ﬁ)



Governing Equations
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Validity of Shrinking Core Model

Thiele Modulus
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Onischak and Gidaspow, “Separation of Gaseous Mixtures by Regenerative sorption on Porous Solids. Part Il: Regenerative separation of CO,”,

Recent Developments in Separation Science, ed. N. Li, 1972
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Reaction Model vs TGA Experimental Date
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Packed-Bed Model
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MgO Mass Fraction in the Packed-Bed
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Summary

= An explicit reaction rate model has been developed which
Is able to describe the reaction rate data obtained in TGA.

» The reaction model is suitable for CFD applications due to
its explicit formulation.

» The reaction model was validated vs the experimental
data obtained in pack-bed.

s Future work includes:

> Application of the CFD and reaction models in simulations of a
bubbling bed and circulating fluidized bed reactors.

» Modeling of Regeneration reaction
» Modeling of the process
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