APPLICATION OF A FILTERED EULER-LAGRANGE FORMALISM TO LARGE-SCALE SIMULATIONS OF DILUTE AND DENSE FLUID-PARTICLE FLOWS

NETL 2013 MULTIPHASE FLOW WORKSHOP AUGUST 6, 2013

JESSE CAPECELATRO, OLIVIER DESJARDINS SIBLEY SCHOOL OF MECHANICAL AND AEROSPACE ENGINEERING CORNELL UNIVERSITY

FUNDING BY DOE OFFICE OF BIOMASS PROGRAM NATIONAL RENEWABLE ENERGY LABORATORY GRATEFULLY ACKNOWLEDGED

Multiphase flows in energy applications

- Multi-physics and multi-scale problem
 - Highly turbulent
 - Triple-phase
 - Complex geometries
 - Chemically reacting (including heat transfer + phase change)
- Computational Thermo-Fluids Laboratory led by Dr. Olivier

Desjardins

- <u>http://ctflab.mae.cornell.edu</u>
- Multi-scale and multi-physics problems
- -Plassiterfyqearatiencomputing mmersed boundaries for modeling complex geometries

Chemically reacting flows (Dr. Pepiot)

2/30

Multi-scale issue in turbulent particle-laden flows

Macroscale

- Large number of particles $\mathcal{O}(10)$
- Length scales:

Mesoscale

- Clustering
- Bubbling
- Particle size segregation
- Turbulence modulation

Microscale

- Wakes
- Particle collisions
- Phase change

m

Outline

- Filtered Euler-Lagrange framework
 - Mathematical formulation
 - Numerical implementation
- Application to dense particle-laden flows
 - Gas-solid fluidized beds
 - Liquid-solid slurries
- Application to dilute particle-laden flows
 - Turbulent channel
 - Moderately-dilute riser
- Summary & conclusions

Ingredients for developing predictive multiphase tools¹

Cornell University Computational Thermo-Fluids Laboratory 1. S. Subramaniam, Lagrangian-Eulerian methods for multiphase flows, *IJMF*, (2013)

Mathematical formulation

First-principle equations

• Gas phase: Variable-density low-Mach Navier-Stokes equations

$$\frac{\partial \rho_f}{\partial t} + \nabla \cdot (\rho_f \boldsymbol{u}_f) = 0$$

$$\frac{\partial}{\partial t} \left(\rho_f \boldsymbol{u}_f \right) + \nabla \cdot \left(\rho_f \boldsymbol{u}_f \otimes \boldsymbol{u}_f \right) = \nabla \cdot \boldsymbol{\tau} + \rho_f \boldsymbol{g}$$

$$oldsymbol{ au} = -poldsymbol{\mathcal{I}} + \mu \left[
abla oldsymbol{u}_f +
abla oldsymbol{u}_f^{\mathsf{T}} - rac{2}{3} \left(
abla \cdot oldsymbol{u}_f
ight) oldsymbol{\mathcal{I}}
ight]$$

• Particles: Newton's second law of motion

$$\begin{split} m_p \frac{d\boldsymbol{u}_p}{dt} &= \int_{\mathcal{S}_p} \boldsymbol{\tau} \cdot \boldsymbol{n} \ dS + \boldsymbol{F}_p^{\text{col}} + m_p \boldsymbol{g} \\ I_p \frac{d\boldsymbol{\omega}_p}{dt} &= \int_{\mathcal{S}_p} \frac{d_p}{2} \boldsymbol{n} \times (\boldsymbol{\tau} \cdot \boldsymbol{n}) \ d\boldsymbol{y} + \sum_j \frac{d_p}{2} \boldsymbol{n} \times \boldsymbol{f}_{t,j \to p}^{\text{col}} \end{split}$$

- Boundary conditions: no-slip and no-penetration at surface of particle
- Collision force: contact mechanics

Mathematical formulation

Volume-filtered description²

- Objective: formulate equations for particle-laden flows that allow $\Delta x \gg d_p$
- Introduce local volume filter based on convolution product with kernelg(r)
 - $\,\delta_f \gg d_p$: enabling the use of microscale models

– $\delta_f \ll \mathcal{L}_{meso}$: mesoscale structures are fully resolved

• Allows to define filtered variable \overline{a} from point variable

$$arepsilon_f \overline{oldsymbol{a}}\left(oldsymbol{x},t
ight) = \int_{\mathcal{V}_f} oldsymbol{a}\left(oldsymbol{y},t
ight) g(|oldsymbol{x}-oldsymbol{y}|) doldsymbol{y} \qquad oldsymbol{a} = \overline{oldsymbol{a}}+oldsymbol{a}')$$

2. Capecelatro & Desjardins, An Euler-Lagrange strategy for simulating particle-laden flows, *JCP*, (2012) Computational Thermo-Fluids 3. 3. T. Anderson, R. Jackson, Fluid mechanical description of fluidized beds, (1967) Laboratory 7/30

Mathematical formulation

Volume-filtering the Navier-Stokes equations

• Continuity

$$\frac{\partial}{\partial t} \left(\varepsilon_f \rho_f \right) + \nabla \cdot \left(\varepsilon_f \rho_f \overline{\boldsymbol{u}_f} \right) = 0$$

• Momentum

$$\frac{\partial}{\partial t} \left(\varepsilon_f \rho_f \overline{\boldsymbol{u}_f} \right) + \nabla \cdot \left(\varepsilon_f \rho_f \overline{\boldsymbol{u}_f} \otimes \overline{\boldsymbol{u}_f} \right) = \nabla \cdot \left(\overline{\boldsymbol{\tau}} - \boldsymbol{R}_u \right) + \varepsilon_f \rho_f \boldsymbol{g} - \boldsymbol{F}^{\text{inter}}$$
$$\overline{\boldsymbol{\tau}} = -\overline{p} \boldsymbol{\mathcal{I}} + \mu \left[\nabla \overline{\boldsymbol{u}_f} + \overline{\boldsymbol{u}_f}^{\mathsf{T}} - \frac{2}{3} \left(\nabla \cdot \overline{\boldsymbol{u}_f} \right) \boldsymbol{\mathcal{I}} \right] + \boldsymbol{R}_{\mu}$$

• Interphase exchange

Ingredients for developing predictive multiphase tools¹

Cornell University Computational Thermo-Fluids Laboratory 1. S. Subramaniam, Lagrangian-Eulerian methods for multiphase flows, *IJMF*, (2013)

Consistent framework from point-particle to full DNS

- Accurate solution of the equations requires $\Delta x \ll \delta_f$
- Model closures depend on δ_f
- What is the appropriate choice for δ_f ?

Computational Thermo-Fluids

Laboratory

$$\int_{\mathcal{V}_{f}} \nabla \cdot \tau g(|\mathbf{x} - \mathbf{y}|) d\mathbf{y} = \nabla \cdot (\varepsilon_{f} \overline{\tau}) - \sum_{p=1}^{n_{p}} \int_{\mathcal{S}_{p}} \mathbf{n} \cdot \tau g(|\mathbf{x} - \mathbf{y}|) d\mathbf{y}$$

$$0.01 \quad 0.1 \quad 1 \quad 10 \quad 100$$

$$\Delta x/d_{p} \xrightarrow{0.01 \quad 0.1 \quad 1 \quad 10 \quad 100} \quad \mathbf{full}$$
Fully-resolved DNS Point-particle
$$\mathbf{V} = \mathbf{V} =$$

Consistent framework from point-particle to full DNS

- Accurate solution of the equations requires $\Delta x \ll \delta_f$
- Model closures depend on δ_f

aboratory

• What is the appropriate choice for δ_f ?

$$\int_{V_f} \nabla \cdot \tau g(|x-y|) dy = \nabla \cdot (\varepsilon_f \tau) - \sum_{p=1}^{n_p} \int_{S} (2p_1 + p_2) dy = \nabla \cdot (\varepsilon_f \tau) - \sum_{p=1}^{n_p} \int_{S} (2p_1 + p_2) dy = \nabla \cdot (\varepsilon_f \tau) - \sum_{p=1}^{n_p} \int_{S} (2p_1 + p_2) dy = \nabla \cdot (\varepsilon_f \tau) - \sum_{p=1}^{n_p} \int_{S} (2p_1 + p_2) dy = \nabla \cdot (\varepsilon_f \tau) - \sum_{p=1}^{n_p} \int_{S} (2p_1 + p_2) dy = \nabla \cdot (\varepsilon_f \tau) - \sum_{p=1}^{n_p} \int_{S} (2p_1 + p_2) dy = \nabla \cdot (\varepsilon_f \tau) - \sum_{p=1}^{n_p} \int_{S} (2p_1 + p_2) dy = \nabla \cdot (\varepsilon_f \tau) - \sum_{p=1}^{n_p} \int_{S} (2p_1 + p_2) dy = \nabla \cdot (\varepsilon_f \tau) - \sum_{p=1}^{n_p} \int_{S} (2p_1 + p_2) dy = \nabla \cdot (\varepsilon_f \tau) - \sum_{p=1}^{n_p} \int_{S} (2p_1 + p_2) dy = \nabla \cdot (\varepsilon_f \tau) - \sum_{p=1}^{n_p} \int_{S} (2p_1 + p_2) dy = \nabla \cdot (\varepsilon_f \tau) - \sum_{p=1}^{n_p} \int_{S} (2p_1 + p_2) dy = \nabla \cdot (\varepsilon_f \tau) - \sum_{p=1}^{n_p} \int_{S} (2p_1 + p_2) dy = \nabla \cdot (\varepsilon_f \tau) - \sum_{p=1}^{n_p} \int_{S} (2p_1 + p_2) dy = \nabla \cdot (\varepsilon_f \tau) - \sum_{p=1}^{n_p} \int_{S} (2p_1 + p_2) dy = \nabla \cdot (\varepsilon_f \tau) - \sum_{p=1}^{n_p} \int_{S} (2p_1 + p_2) dy = \nabla \cdot (\varepsilon_f \tau) - \sum_{p=1}^{n_p} \int_{S} (2p_1 + p_2) dy = \nabla \cdot (\varepsilon_f \tau) - \sum_{p=1}^{n_p} \int_{S} (2p_1 + p_2) dy = \nabla \cdot (\varepsilon_f \tau) - \sum_{p=1}^{n_p} \int_{S} (2p_1 + p_2) dy = \nabla \cdot (\varepsilon_f \tau) - \sum_{p=1}^{n_p} \int_{S} (2p_1 + p_2) dy = \nabla \cdot (\varepsilon_f \tau) - \sum_{p=1}^{n_p} \int_{S} (2p_1 + p_2) dy = \nabla \cdot (\varepsilon_f \tau) - \sum_{p=1}^{n_p} \int_{S} (2p_1 + p_2) dy = \nabla \cdot (\varepsilon_f \tau) - \sum_{p=1}^{n_p} \int_{S} (2p_1 + p_2) dy = \nabla \cdot (\varepsilon_f \tau) - \sum_{p=1}^{n_p} \int_{S} (2p_1 + p_2) dy = \nabla \cdot (\varepsilon_f \tau) - \sum_{p=1}^{n_p} \int_{S} (2p_1 + p_2) dy = \nabla \cdot (\varepsilon_f \tau) - \sum_{p=1}^{n_p} \int_{S} (2p_1 + p_2) dy = \nabla \cdot (\varepsilon_f \tau) - \sum_{p=1}^{n_p} \int_{S} (2p_1 + p_2) dy = \nabla \cdot (\varepsilon_f \tau) - \sum_{p=1}^{n_p} \int_{S} (2p_1 + p_2) dy = \nabla \cdot (2p_1$$

Numerical implementation

Filter discretization

Laboratory

- Direct implementation becomes too expensive
- Filter based on the convolution of mollification and Laplacian smoothing²
 - 1. Mollification: transfer particle data to neighboring cells
 - 2. Diffusion: smooth data with specified width
- Fully conservative, implicit treatment
- Special care is needed at the walls

Numerical implementation

Ingredients for developing predictive multiphase tools¹

Cornell University Computational Thermo-Fluids Laboratory 1. S. Subramaniam, Lagrangian-Eulerian methods for multiphase flows, *IJMF*, (2013)

Ingredients for developing predictive multiphase tools¹

Cornell University Computational Thermo-Fluids Laboratory 1. S. Subramaniam, Lagrangian-Eulerian methods for multiphase flows, *IJMF*, (2013)

Numerical implementation

Computational platform

NGA⁴

- Arbitrarily high-order multi-physics DNS/LES code
- Conservation of mass, momentum, and kinetic energy
- Highly scalable

4. O. Desjardins, G. Cornell University Computational Thermo-Fluids Laboratory

4. O. Desjardins, G. Blanquart, G. Balarac, H. Pitsch, High order conservative finite difference scheme for variable density low Mach number turbulent flows, *JCP* (2008)

Ingredients for developing predictive multiphase tools¹

Cornell University Computational Thermo-Fluids Laboratory 1. S. Subramaniam, Lagrangian-Eulerian methods for multiphase flows, *IJMF*, (2013)

Application to dense gas-solid flows²

Application to liquid-solid slurries⁵

- Compared with experiments by Roco & Balakrishnam (1985)
- Two cases simulated
 - Re=85,000 (above critical deposition velocity)
 - Re=42,660 (below critical deposition velocity)
- Force liquid mass flow rate in a periodic pipe
- 768 x 156 x 156 mesh
- 19 M polydisperse particles

Cornell University Computational Thermo-Fluids Laboratory 5. Capecelatro & Desjardins, Eulerian-Lagrangian modeling of turbulent liquid-solid slurries in horizontal pipes, *IJMF* (2013)

Application to liquid-solid slurries

Computational Thermo-Fluids Lab

Time = 0.0000

Application to liquid-solid slurries

Laboratory

Application to liquid-solid slurries

Simulation configuration

- δ = 2 cm
- Re₂₀ = 13,850
- Bulk velocity = 9.2 m/s
- Centerline velocity, $U_{cl} = 10.5$
- Particle diameter = 150 µm
- Particle density = 2,500 kg/m³
- St = 50

	Re_{τ}	ϕ	Wall boundary condition
Paris & Eaton (2001)	644	0.2	Rough
Benson & Eaton (2003)	617	0.15	Smooth
NGA	630	0.15	Smooth

Single-phase channel flow

Particle-laden channel

Turbulence modulation & preferential concentration due to non-uniform interphase coupling

Particle number density

Particle-laden channel

Application to risers

• Dimensional analysis

$${\rm Fr} = U/\sqrt{gd_p} \qquad {\rm Ar} = \rho_s \rho_f d_p^3 g/\mu^2 \quad D/d_p$$

- Experimental observations (Noymer & Glicksman, 2000)
 - Clusters fall very close to the walls (~100 μm)
 - Clusters located within hydrodynamic boundary layer
 - Cluster fall velocity independent of inflow conditions

$$\frac{u_{cl}}{u_{mf}} = \frac{1000}{\sqrt{\text{Ar}}} \quad u_{mf} = 0.00075 \frac{\rho_s g d_p^2}{\mu}$$

$$u_{cl} = 0.75 \sqrt{\frac{\rho_s}{\rho_f} g d_p}$$

- Simulation parameters
 - 3D pipe geometry (immersed boundaries)
 - Periodic in vertical direction
 - 760,000 particles
 - Mesh: 800x83x83

Cornell University Computational Thermo-Fluids Laboratory

	Case 1	Case 2	Case 3	Case 4	Case 5				
Ar	50	100	500	2500	12500				
D/d_p	320	150	150	150	150				
$\langle \varepsilon_p \rangle$	0.15%	1.5%	1.5%	1.5%	1.5%				
$ ho_p/ ho_f$	2500	2500	2500	2500	2500				

Simulation cases

Application to risers

Cluster fall velocity

•

Laboratory

29/30

Conclusions

- Volume filtered formalism provides a consistent framework from point-particle to fully resolved simulations
- Pushing the validity of classical microscale models to finer meshes yields excellent results
- The proposed framework can capture a range of phenomenon including
 - Clustering
 - Bubbling
 - Segregation in particle size
 - Preferential concentration
- Looking forward
 - Study intermediate values of particle diameter to mesh size ratio ($\lesssim d_p/\Delta x \lesssim 10$)
 - Implement sharper / higher accuracy filters
 - Use this framework to provide closure for RANS modeling:

R.O. Fox, J. Capecelatro, O. Desjardins Validation of a Multiphase Turbulence Model Using Mesoscale DNS of Gravity-Driven Gas-Particle Flow. 11:50-12:10 PM

