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Multi-phase heat transfer with fluidized bed

« Temperature control, heat addition, extraction in
fluidized beds

« Example — CO, capture and regeneration (post combustion)
« Temperature control is essential for optimal operation
o Capture is exothermic
 Regeneration is endothermic

 Experimental studies and mechanistic theory
have been used to develop correlations for heat
transfer coefficients
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Uncertainties I1n heat transfer correlations

 Experimental correlations for heat transfer
coefficient in a fluidized bed of polypropylene
particles with a horizontal tube

1000 Heat transfer coefficients
o <&
& B O Vreedenberg (1960)
! V Ay Andeen and Glicksman (1976)
£ 800 v Petiie etal, (1968)
2 | >  Ainshtein (1966)
= < Gelperin et al. (1966)
£ & Genetti (1971)
€ O Temovskaya and Korenberg (1971)
7] X Grewal and Saxena (1981)
S m  Ganzaetal (1982)
& 600k g A Glicksman and Decker (1980)
§ Kurochkin (1966)
but Eod ®
@ L & &
E x [ ] 5
g e}
 400F° x  © &
Q @ A |
K=
8 © L
g X &
5 200 - g
. §
0 L L L L I L L L L I L L L L I L 1 L L I L L L L I
0] 0.0005 0.001 0.0015 0.002 0.0025

Particle diameter (m)

High Performance Computational Fluid-Thermal Sciences & Engineering Lab



Objectives

e Heat transfer analysis using a fluidized bed —
tube heat exchanger

 High fidelity using particle scale heat transfer analysis
« CFD-DEM technique to analyze the system
o Capture the 3D multiphase flow physics

e Estimate heat transfer coefficient around an immersed
tube heat exchanger
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Methodology

e Use of in-house code GenIDLEST

 Turbulent flows in complex geometries— RANS/LES
e Heat Transfer

« ALE & IBM for dynamic geometries
« Coupled CFD-DEM

« Soft sphere model for collisions

e Heat transfer models

e Particle-fluid convection
e Gunn correlation?

e Radiation heat transfer

Particle i Particle j

* Neglected (T, < 700K) et
 Particle-particle and Particle-surface Trarfer, 21, (1678 4GT-TE.

o CO n d u Ctl on ZG.K._ Batchelor, RW O'Brien, Thermal or
o QuaS|'Steady mode|2 Electrical Conduction Through a Granular

Material, Proceedings of the Royal Society of

° Adjustments to account for “Soft Sphere” London. Series A, Mathematical and Physical

Sciences, 355 (1977) 313-333.
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Fluidized bed with tube heat exchanger
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Bed

Width (m) W 0.06

Transverse Thickness (m) T 0.0054

Height (m) H 0.768

Tube

Height from bottom of bed (m) 0.03
T Diameter (m) D, 0.024
-~ | Simulation parameters Notation |Sand particles | Tube/Wall properties
-+ | Density (kg/m3) p 2600
-~ | Thermal conductivity (W/m-K) K 1.1 380
HirH Heat capacity (J/Kg-K) Cp 840 24.4
HHH Elastic modulus (MPa) E 10 10
R Poisson’s ratio o, 0.3 0.3
*”ﬁ Coefficient of normal restitution er'] 0.9 0.9

Coefficient of friction Uy 0.3 0.3

Spring stiffness coefficient (N/m) [K 800 800

Initial temperature (K) Tt 298 298

Sphericity Sp 1

Number N 67500

Diameter (mm) D, 0.6

Time step (seconds) At 2x10-5
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Initial estimates of heat transfer coefficient

(HTC) around the tube

 Experiments by Wong et al. 2006
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Investigation of differences between

simulations and experiments
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« For 3<Ar<21700 laminar, Ar > 1.6x10° turbulent (Saxena et al.)

High Performance Computational Fluid-Thermal Sciences & Engineering Lab



LES with subgrid modeling

« Dynamic Smagorinsky subgrid stress model in outer

flow

 Wall layer model in inner layer?.

Virtual mesh
embedded in outer
LES grid

Tangential velocity
formulation

[1

1_+ 1 |du |_dP
Re Re jdn | dt

RePr \dT
+ =0
Re Pr jdn

1 Patil and Tafti (2011)
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Local HTC with WMLES

 Use of Wall function LES
o +20% of experiments
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Particle temperature evolution

e Snapshots of particle temperature

t=0.1s t=0.2s t=0.5s t=1.0s t=2.0s t=3.0s t=6.0s

Mon-di mensional
Tempergure

0.10a
0.091
— | 0.033
— 0.074
— 0.065
0.0a7
0.045
| 0.040
| 0.031
0.022
0014
0.005

Virei

s .

High Perfo ce Computational Fluid-Thermal Sciences & Engineering



Time/space averaged guantities

Space averaged Time averaged
 Void fraction and HTC
e Heat transfer mechanism
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Comparison with empirical correlations
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Conclusion and Future work

« Average HTC estimated using WMLES

o +20% of experiments
e Limited to non-laminar flows

e Use of separate grids
 Fluid phase
e Can be solved using LES grid

e Particulate phase
e Larger grid size for smooth void fractions
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Discrete element method (DEM)

o Soft sphere model

 Normal direction
 Forces modeled as spring-mass damper system

 Tangential direction

 Forces modeled as spring-mass damper system with a slider
In series for particle sliding

e Softening treatment
 Reduced spring stiffness

o Appliedto
o Particle-particle collision
e Particle-wall collision M slider

Particle i Particle |
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DEM-CFD coupling algorithm

 Procedure of DEM + GenIDLEST coupling

CFD SOLVER (GENIDLEST+DEM subroutine)

Calculate drag on solids due to gas (Fq,g)
I D29 on fluid due to solid is (-Fy,)
Calculate fluid velocity

Calculate fluid pressure etc.
Every
fluid time

step Start of multiple solid time steps

Calculate
Particle —particle collision force.
Particle-wall collision.
Every
solid time Drag force on each particle.

step Pressure force on each particle.

Each particle’s position and velocity.

End of multiple solid time steps

Next fluid time

step Calculate

» Volume fraction in each fluid cell.

+ Volume averaged solid velocity.
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Solid phase - Governing Equations

e Newton’s second law

dup,i

. VB
Mpi =g = (pp—Pf)Vp,ig + B

1—¢ (l_if B a)p,i) + Z Fp,ij + Fp,other

\ J L J \ )
Y Y Y

Buoyancy Drag Particle-particle
/surface

 Energy conservation

dTp,i

= pr,i + Qp,i

\ ) L J
T Y

Convective Particle-particle
/surface
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Thermal Discrete Element Method (TDEM)

« Solving the energy equation for particulate phase
e Using the soft sphere model

 Coupling the particle and fluid energy equations
e Source terms in respective energy equations

« Modeling heat transfer at particle level
o Particle-fluid
e Particle-particle
e Particle-surface
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Particle/surface — particle heat transfer

Modes of heat transfer during particle collision

e Radiation
o Generally neglected for temperatures < 700 K

e Friction heating
« Experiments show it to be negligible

 Gas lens /liquid bridge effect
* For flows with stagnant fluid around particles

 Conduction heat transfer
1. Quasi steady approach
2. Unsteady approach
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Particle/surface — particle

conduction heat transfer

 Quasi steady modeling approach perticlei [ REEE
o Steady state solution at each time step
 Assumption of Biot number <<'1

 Analytical solution of contact conductance
Hyc,ij = 2Ky iTcij

* Using the Hertz's theory for contact radius . ;;
1/3
R*

-

Fpijn

E*

ij

Hycij = 2Kp,;

ij
 Heat transported across the collisional interface per
unit t|me Qpc,ij pczj(T T)
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Particle/surface — particle

conduction heat transfer

e Unsteady solution approach
 Heat Equation 19T 149 (T +62T
adt r@r(@r) 072

Particle i | Particle j

« Assumptions

e Elastic collision

 Perfectly smooth particles with no contact resistance
 Contact radius << particle radius

« Two particles are treated as infinite mediums

* Solution for 1D assumption of Fo,;; K 1 (Fop;j = a;t /1)
e Heat Flux do,ij = (0-87:8p,iﬁp,j(Tp,j - Tp,i)Actc_O'S)/(ﬁp,i + ﬁp,j)

where t.is calculated from Hertz’'s theory
A. is calculated from DEM simulations
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Particle/surface — particle

conduction heat transfer

 Higher Fourier number particle i |Particle
e Correction factor to account for 2D heat transfer
o Qpcij = Cqo,ij
« Solving the 2D conduction equation once to get ‘C’
 Interpolating the data from Sun and Chen, 1988

e Total conduction heat transfer

Np,i Ny i

Qpc,i = z Qpc,ij & QPCW,i = 2 QPCW»U
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Challenges

e Contact time dependent calculations

 The contact time and contact area depend on the
material properties
e Restoration method (Lu et al.)
« Correction to contact time and area of contact

t_lzjg & _ \/Z
ta | ky aq Ky
e Zhou et al. correction
C=Teq/Tei = (Eij/Ei*j)l/S
e Convective heat transfer coefficient

e Nusselt number correlations
e Function of void fraction

Particle i | Particle j
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Nusselt number correlations

e Calculation of h based on void fraction
« Agarwal’s expression (1988)

1
Nu,; =24 0.6s7 “**Re 7 Pr3

e Li and Mason correlation (2000)
r 2+ 0.653-5@3;5&% Re,; < 200

- 1
Nipi =12 +75(05Re)T + 0.02Re)?)Pr3 200 < Rey; < 1500

l\ 2+ 0.000045¢7°Re,? Re,; > 1500

 Ranz (1992)

W =

— 5
Nu,; = 2& + 0.69Re, 7 Pr

1 1
Vn‘g]nla Nu = (7 — 10e + 5&?) (1 + 0.7Re£'2Pr§> + (1.33 — 2.4¢ + 1.2e®)Rep Pr3
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Heat transfer validation

e Validation of particle/surface-particle heat
conduction with experiments

Total energy transferred per impact Ben-Ammar et al. | Kuwagi at al.
Experimental (J) 1-3E-04 2.788E-02
2D corrected uns_teady solution as in Lu et al. 2 339E-04 5 173E-02
A. and T, corrections (J)

2D corrected_unsteady solution as in Zhou et 1. 106E-04 2 289E-02

al. A, corrections (J)

Quasi steady approach (J) 1.220E-04 3.949E-03
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