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Multi-phase heat transfer with fluidized bed 

• Temperature control, heat addition, extraction in 
fluidized beds 

• Example – CO2 capture and regeneration (post combustion) 
• Temperature control is essential for optimal operation 
• Capture is exothermic 
• Regeneration is endothermic 

• Experimental studies and mechanistic theory 
have been used to develop correlations for heat 
transfer coefficients 
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Uncertainties in heat transfer correlations 

• Experimental correlations for heat transfer 
coefficient in a fluidized bed of polypropylene 
particles with a horizontal tube 
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Objectives 

• Heat transfer analysis using a fluidized bed – 
tube heat exchanger 

 

• High fidelity using particle scale heat transfer analysis 
• CFD-DEM technique to analyze the system 
• Capture the 3D multiphase flow physics 

 
• Estimate heat transfer coefficient around an immersed 

tube heat exchanger 
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Methodology 

• Use of in-house code GenIDLEST 
• Turbulent flows in complex geometries– RANS/LES 
• Heat Transfer 
• ALE & IBM for dynamic geometries 
• Coupled CFD-DEM 

• Soft sphere model for collisions 
• Heat transfer models 

• Particle-fluid convection 
• Gunn correlation1 

• Radiation heat transfer 
• Neglected (Tmax < 700K) 

• Particle-particle and Particle-surface 
• Conduction 

• Quasi-steady model2 

• Adjustments to account for “soft sphere” 
 

 

1D.J. Gunn, Transfer of heat or mass to 
particles in fixed and fluidised beds, 
International Journal of Heat and Mass 
Transfer, 21 (1978) 467-476. 
 
2G.K. Batchelor, R.W. O'Brien, Thermal or 
Electrical Conduction Through a Granular 
Material, Proceedings of the Royal Society of 
London. Series A, Mathematical and Physical 
Sciences, 355 (1977) 313-333.  
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Fluidized bed with tube heat exchanger 

Bed 
Width (m) W 0.06 
Transverse Thickness (m) T 0.0054 
Height (m) H 0.768 
Tube 
Height from bottom of bed (m)   0.03 
Diameter (m) Dt 0.024 
  
Simulation parameters Notation Sand particles Tube/Wall properties 
Density ( kg/m3) ρ 2600 
Thermal conductivity (W/m-K) κ 1.1 380 
Heat capacity (J/Kg-K) Cp 840 24.4 
Elastic modulus  (MPa) E 10 10 
Poisson’s ratio σp 0.3 0.3 
Coefficient of normal restitution en 0.9 0.9 
Coefficient of friction µp-p 0.3 0.3 
Spring stiffness coefficient (N/m) K 800 800 
Initial temperature (K) Tinit 298 298 
Sphericity Sp 1   
Number  N 67500   
Diameter (mm) Dp 0.6   
Time step (seconds) Δt 2x10-5   
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Fluidized bed with immersed tube heat 
exchanger 
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Initial estimates of heat transfer coefficient 
(HTC) around the tube 

• Experiments by Wong et al. 2006 
 
 
 
 
 
 

 
• Convective heat 

transfer dominant 
• Past efforts do not 

resolve surface 
convective heat 
transfer but model 
using the Dittus-
Boelter correlation at 
tube surface 

• Grid too coarse to 
resolve thermal 
boundary layer! 



High Performance Computational Fluid-Thermal Sciences & Engineering Lab 

Investigation of differences between 
simulations and experiments 

• Velocity signal 45o from stagnation 
 

 
 
 
 

 
 

 

• Archimedes number 𝑨𝑨𝑨𝑨 = 𝒈𝒈𝒅𝒅𝒑𝒑𝟑𝟑𝝆𝝆𝒇𝒇(𝝆𝝆𝒑𝒑−𝝆𝝆𝒇𝒇)
𝝁𝝁𝒇𝒇
𝟐𝟐 ≈ 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 

• For 3 < Ar < 21700 laminar, Ar > 1.6x106 turbulent (Saxena et al.) 
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• Dynamic Smagorinsky subgrid stress model in outer 
flow 

• Wall layer model in inner layer1. 

 
LES with subgrid modeling 

 

    

Virtual mesh 
embedded in outer 

LES grid  
Tangential velocity 

formulation 
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1 Patil and Tafti (2011) 
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Local HTC with WMLES 

• Use of Wall function LES 
• ± 20% of experiments 
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Particle temperature evolution 

• Snapshots of particle temperature 
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Time/space averaged quantities 

        Space averaged 
• Void fraction and HTC 
• Heat transfer mechanism 

    Time averaged 
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Comparison with empirical correlations 
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Conclusion and Future work 

• Average HTC estimated using WMLES 
• ± 20% of experiments 
• Limited to non-laminar flows 

 
• Use of separate grids  

• Fluid phase 
• Can be solved using LES grid 

• Particulate phase 
• Larger grid size for smooth void fractions 
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Discrete element method (DEM) 

• Soft sphere model 
• Normal direction 

• Forces modeled as spring-mass damper system  
• Tangential direction 

• Forces modeled as spring-mass damper system with a slider 
in series for particle sliding 

• Softening treatment 
• Reduced spring stiffness 

• Applied to 
• Particle-particle collision 
• Particle-wall collision 
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DEM-CFD coupling algorithm 

• Procedure of DEM + GenIDLEST coupling 
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Solid phase - Governing Equations  

• Newton’s second law 
 
 
 
 

• Energy conservation 

𝑚𝑚𝑝𝑝,𝑖𝑖
𝑑𝑑𝑢𝑢𝑝𝑝,𝑖𝑖

𝑑𝑑𝑑𝑑
= (𝜌𝜌𝑝𝑝−𝜌𝜌𝑓𝑓)𝑉𝑉𝑝𝑝,𝑖𝑖𝑔⃗𝑔 +

𝑉𝑉𝑝𝑝,𝑖𝑖𝛽𝛽
1 − 𝜀𝜀

(𝑢𝑢𝑓𝑓 − 𝑢𝑢𝑝𝑝,𝑖𝑖) + �𝐹⃗𝐹𝑝𝑝,𝑖𝑖𝑖𝑖 + 𝐹⃗𝐹𝑝𝑝,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 

𝑚𝑚𝑝𝑝,𝑖𝑖𝑐𝑐𝑝𝑝,𝑖𝑖
𝑑𝑑𝑇𝑇𝑝𝑝,𝑖𝑖

𝑑𝑑𝑑𝑑
= 𝑄𝑄𝑓𝑓𝑓𝑓,𝑖𝑖 + 𝑄𝑄𝑝𝑝,𝑖𝑖 

Buoyancy Drag Particle-particle 
/surface 

Particle-particle 
/surface 

Convective 
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Thermal Discrete Element Method (TDEM) 

• Solving the energy equation for particulate phase 
• Using the soft sphere model 

 
• Coupling the particle and fluid energy equations 

• Source terms in respective energy equations 
 

• Modeling heat transfer at particle level 
• Particle-fluid 
• Particle-particle 
• Particle-surface 
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Particle/surface – particle heat transfer 

Modes of heat transfer during particle collision 
• Radiation 

• Generally neglected for temperatures < 700 K 
• Friction heating 

• Experiments show it to be negligible 
• Gas lens / liquid bridge effect 

• For flows with stagnant fluid around particles 
• Conduction heat transfer 

1. Quasi steady approach 
2. Unsteady approach 
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Particle/surface – particle  
conduction heat transfer  

• Quasi steady modeling approach 
• Steady state solution at each time step 
• Assumption of Biot number << 1  
• Analytical solution of contact conductance 

 
• Using the Hertz’s theory for contact radius 𝑟𝑟𝑐𝑐,𝑖𝑖𝑖𝑖  

 
 

• Heat transported across the collisional interface per 
unit time 

𝐻𝐻𝑝𝑝𝑝𝑝,𝑖𝑖𝑖𝑖 = 2𝜅𝜅𝑝𝑝,𝑖𝑖𝑟𝑟𝑐𝑐,𝑖𝑖𝑖𝑖 

𝐻𝐻𝑝𝑝𝑝𝑝,𝑖𝑖𝑖𝑖 = 2𝜅𝜅𝑝𝑝,𝑖𝑖
𝐹⃗𝐹𝑝𝑝,𝑖𝑖𝑖𝑖,𝑛𝑛 𝑅𝑅∗𝑖𝑖𝑖𝑖

𝐸𝐸∗𝑖𝑖𝑖𝑖

1/3

 

𝑄𝑄𝑝𝑝𝑝𝑝,𝑖𝑖𝑖𝑖 = 𝐻𝐻𝑝𝑝𝑝𝑝,𝑖𝑖𝑖𝑖 𝑇𝑇𝑗𝑗 − 𝑇𝑇𝑖𝑖  

Particle i Particle j 
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Particle/surface – particle  
conduction heat transfer 

• Unsteady solution approach 
• Heat Equation 

 
• Assumptions 
• Elastic collision 
• Perfectly smooth particles with no contact resistance 
• Contact radius << particle radius 
• Two particles are treated as infinite mediums 

 
• Solution for 1D assumption of 𝐹𝐹𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝 ≪ 1 

 
• Heat Flux         
 
    where      𝒕𝒕𝒄𝒄 is calculated from Hertz’s theory 
     𝑨𝑨𝑐𝑐 is calculated from DEM simulations 

         

𝑞𝑞0,𝑖𝑖𝑖𝑖 = 0.87𝛽𝛽𝑝𝑝,𝑖𝑖𝛽𝛽𝑝𝑝,𝑗𝑗 𝑇𝑇𝑝𝑝,𝑗𝑗 − 𝑇𝑇𝑝𝑝,𝑖𝑖 𝐴𝐴𝑐𝑐𝑡𝑡𝑐𝑐−0.5 / 𝛽𝛽𝑝𝑝,𝑖𝑖 + 𝛽𝛽𝑝𝑝,𝑗𝑗  

(𝐹𝐹𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝 = 𝛼𝛼𝑖𝑖𝑡𝑡𝑐𝑐/𝑟𝑟𝑐𝑐2) 

Particle i Particle j 
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Particle/surface – particle  
conduction heat transfer 

• Higher Fourier number 
•  Correction factor to account for 2D heat transfer 

•   
• Solving the 2D conduction equation once to get ‘C’ 
• Interpolating the data from Sun and Chen, 1988 

 

• Total conduction heat transfer 
 

𝑄𝑄𝑝𝑝𝑝𝑝,𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑞𝑞0,𝑖𝑖𝑖𝑖 

𝑄𝑄𝑝𝑝𝑝𝑝,𝑖𝑖 = �𝑄𝑄𝑝𝑝𝑝𝑝,𝑖𝑖𝑖𝑖

𝑛𝑛𝑝𝑝,𝑖𝑖

𝑗𝑗=1

                 &                    𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖 = �𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖𝑖𝑖

𝑛𝑛𝑤𝑤,𝑖𝑖

𝑗𝑗=1

 

Particle i Particle j 
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Challenges 

• Contact time dependent calculations 
• The contact time and contact area depend on the 

material properties 
• Restoration method (Lu et al.) 

• Correction to contact time and area of contact 
 
 

• Zhou et al. correction 
 

• Convective heat transfer coefficient  
• Nusselt number correlations 

• Function of void fraction 
 

𝑡𝑡1
𝑡𝑡𝑎𝑎
≈

𝑘𝑘𝑎𝑎
𝑘𝑘1

 
𝑎𝑎1
𝑎𝑎𝑎𝑎

= 𝑘𝑘𝑎𝑎
𝑘𝑘1

4  

𝑐𝑐 = 𝑟𝑟𝑐𝑐𝑐𝑐/𝑟𝑟𝑐𝑐𝑐𝑐 = 𝐸𝐸𝑖𝑖𝑖𝑖/𝐸𝐸𝑖𝑖𝑖𝑖∗
1/5 

Particle i Particle j 
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Nusselt number correlations 

• Calculation of h based on void fraction 
• Agarwal’s expression (1988) 

 
 

• Li and Mason correlation (2000) 
 
 
 

• Ranz (1992) 
  

𝑁𝑁𝑁𝑁 = 7 − 10𝜀𝜀 + 5𝜀𝜀2 1 + 0.7𝑅𝑅𝑅𝑅𝑝𝑝0.2𝑃𝑃𝑃𝑃
1
3 + 1.33 − 2.4𝜀𝜀 + 1.2𝜀𝜀2 𝑅𝑅𝑅𝑅𝑝𝑝0.7𝑃𝑃𝑃𝑃

1
3 
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Heat transfer validation 

• Validation of particle/surface-particle heat 
conduction with experiments 

 
• Ben-Ammar et al. performed particle-surface 

collisional heat transfer studies 
• Under reduced atmosphere 
• Particles bombarded on a small surface element 

 

• Kuwagi et al. performed particle-particle static and 
dynamic collision heat transfer analysis 

• Electrical current as a measure of the heat transfer 
• Curve fitted function Qcond = 0.111*I+19.736 

Total energy transferred per impact Ben-Ammar et al.  Kuwagi at al.  

Experimental (J) 1-3E-04 2.788E-02 

2D corrected unsteady solution as in Lu et al. 
Ac and Tc corrections (J) 2.339E-04 5.173E-02 

2D corrected unsteady solution as in Zhou et 
al. Ac corrections (J) 1.106E-04 2.289E-02 

Quasi steady approach (J) 1.220E-04 3.949E-03 
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