
NETL 2013 Workshop on Multiphase Flow Science
August 6-7, 2013, Morgantown, WV

Development of OpenMP Parallelization for MFIX-DEM

Dr. Handan Liu Dr. Danesh Tafti
Research Scientist W.S. Cross Professor
Virginia Tech Virginia Tech

‹#›

Motivation / Objectives
• Motivation

– Different parallelization strategies are being considered on modern
computer architectures that can lead to large performance gains of MFIX
to allow calculations on more physically realistic systems.

• Objectives
MPI parallelization for MFIX-DEM has been completed in the previous work at
Virginia Tech group.

– Enhance parallelization flexibility on multicore systems by OpenMP;
– Improve scalability on multicore SMP cluster systems by Hybrid

implementation of MPI+OpenMP;
– Extend OpenMP instrumentation to co-processing (GPUs; Intel-MIC).

‹#›

• Evaluate Initial OpenMP Performance
– TAU (Tuning and Analysis Utilities) profiling along with PDT

(Program Database Toolkit)

• Identify the major (time-consuming) routines

• Analyze the data structures on loop level in these routines

• Assign variables with different attributes, e.g. private or
shared, for OpenMP implementation

• Set the intermediate variables as private to replace global
variables to realize OpenMP parallelization if necessary.

• Modification Principle:
– In compliance with the existing framework of MFIX

Method

‹#›

Initial Performance Evaluation – Exclusive Time

☞ DEM solver takes almost 90%
 of the total time.
☞ Preconditioner of the linear

equation solver takes over 5% of
the total time

☞ The major subroutines account
for over 95% of the total run time.

☞ Total Particles – 80,000
 Total Cells – 18,000

MFIX-DEM

‹#›

Major Routines for OpenMP Parallelization
• Parallelize these major routines for OpenMP

implementation
– In DEM solver

• Contact force computation
– calc_force_des.f

• Drag force computation
– drag_fgs.f, including calc_des_drag_gs and des_drag_gs

• Locating the particle in fluid cell (particles in cell)
– particles_in_cell and comp_mean_fields_interp

– In Fluid solver
• Linear equation solver of Bi-Conjugate Gradients

Stabilized method (BiCGSTAB)
– leq_msolve (line iterative preconditioners)

‹#›

Typical Problems for OpenMP Parallelization
in MFIX-DEM

• In MFIX-DEM, there are two main kinds of do-loops, in
which care needs to be taken with OpenMP
parallelization
– One kind of do-loops is over all fluid cells; the inner do-loop is

over the particles in the corresponding cell and often using the
neighbor cells quantities.

• Note: the neighbor cells maybe spread across threads for
OpenMP implementation

– Another kind of do-loops is over all particles, in which fluid cell
indices are used.

• Note: the total number of particles is spread over threads and the
particles locating to a fluid cell maybe spread across threads.

‹#›

Data-Sharing Attributes in OpenMP Program
❑ In an OpenMP program, there are two basic types:

 ● SHARED
✔ All threads can read and write the data simultaneously, unless
protected through a specific OpenMP construct
✔ All changes made are visible to all threads

 ● PRIVATE
✔ Each thread has a copy of the data
✔ No other thread can access this data
✔ Changes only visible to the thread owning the data

‹#›

A Typical OpenMP Example in MFIX-DEM

• The code index IJK loops over all fluid cells to
calculate the fluid velocity interpolating at the
particle location. • In an OpenMP parallel do loop, gstencil and

vstencil are global and shared between
threads, and do not have an IJK dimension.

The following code fragments exist in every
interpolating calculation in MFIX-DEM model

• The arrays gstencil and vstencil should be set
as private to avoid a race condition by defining
private arrays gst_tmp and vst_tmp for
OpenMP parallel.

• For each fluid cell, the global variables gstencil
and vstencil calculate the geometry and the
velocity factors for interpolation.

• In the original code, because each fluid cell is
visited sequentially, gstencil and vstencil will have
unique values corresponding to that fluid cell
before it goes to the next fluid cell.

‹#›

Another Typical Problem with OpenMP
in MFIX-DEM

• Reduction Operations
– When a variable has been declared as SHARED because all

threads need to modify its value, it is necessary to ensure that
only one thread at a time is writing/updating the memory
location of the considered variable, otherwise unpredictable
results will occur.

– By using the clause REDUCTION it is possible to solve this
problem, since only one thread at a time is allowed to update
the value, ensuring that the final result will be the correct one.

‹#›

Another Typical OpenMP Example in MFIX-DEM

• The code loops over all particles and bins
particles in fluid cells based on particles(i, j, k)
indices.

• In OpenMP implementation, the total number of
particles is distributed over threads and
particles belonging to a fluid cell maybe spread
across threads.

The following code fragments from the subroutine
particles_in_cell to bin particles in fluid cells.

• Care needs to be taken when updating shared
variable PINC.

• With the REDUCTION clause, the OpenMP
compiler generates code such that a race
condition is avoided.

• In the sequential code, each particle is visited
sequentially and binned in the corresponding
fluid cell to increment the value of PINC(IJK).

• PINC(IJK) is a global array to store the number
of particles in a fluid cell.

‹#›

• Performance evaluation for full simulation with a speed up of 7x on 8
threads and an efficiency of 87% after modified for OpenMP parallel.

Scaling Analysis of OpenMP for MFIX-DEM
After modifying major routines

• The 3D fluidized bed with 80,000
particles and 18,000 cells was
simulated.

• A workstation:
 Running Red Hat Enterprise Linux

release 5.3
 One node with two Intel Xeon 2.27GHz

quad-core processors with a total
memory of 24GB.

• Intel Compiler 13.1.
• OpenMP implementing on 2, 4 and

8 threads.

‹#›

• Performance evaluation for
major routines after
modification with OpenMP
directives. The speed up is as
below:

– calc_force_des.f:
• 7.7x on 8 threads

– drag_fgs.f
• 7.4x on 8 threads

– leq_msolve
• 6.2x on 8 threads

– particles_in_cell.f
• 5.9x on 8 threads

☞ The 3D bubbling fluidized bed case
with 80,000 particles was simulated.

Scaling Analysis of OpenMP
 – Major Routines

‹#›

Parameter Value
Total Particles 1.28 million

Diameter 4 mm

Density 2700 kg/m3

Coef. of restitution
Particle, Wall

0.95, 0.95

Friction coefficient
Particle, Wall

0.3, .03

Spring constant
Particle, Wall

2400, 2400 N/m

Dimension
Grid size

64×100×64 cm
64×100×64

Superficial Velocity 2.0 m/s

Time Step (Fluid, Solid) 5.0e-5 s, 8.6e-6 s

Number of processors 8,16,32,64,128

Large System – Hybrid MPI+OpenMP

• Total Particles – 1.28 million; Total
cells – 409,600

• Hybrid parallelism of MPI+OpenMP
implementation up to 128
processors

• SMP cluster:
– 204 nodes Total
– 2x Intel Xeon E5645 2.4GHz
– 12 Cores per node
– 24 GB Shared Memory per node
– QDR Infiniband interconnect

• Intel Compiler 13.1
• Domain decomposition only in x

and z directions for MPI
• Total physical simulation time is 0.5

seconds

‹#›

• The hybrid calculation gives a
speedup of 96x versus 89x for
standalone MPI on 128 cores.

• As the number of MPI
processes increases, the
overhead of communicating
ghost particles between MPI
processes also increases.

Scaling Analysis of hybrid MPI+OpenMP
for large DEM system

Total Particles – 1.28 million;
Total cells – 409,600

‹#›

Validation

• The 3D fluidized bed with 80,000 particles
of 4mm diameter was simulated for this
validation.

• The simulation was carried out for a total of
5 seconds.

• The time averaged profiles were obtained
from 2.0-5.0 seconds.

• Results of time-averaged void fractions and
gas velocity (V_g) were compared at the
location x=8.5cm and z=8.5cm for serial
and OpenMP (4 threads) implementation.

Ascertain the parallelization does not
change in the physics.

• The validation shows that the parallel
simulation does not alter the accuracy of
the solution.

‹#›

Summary

• The parallel DEM solver for OpenMP implementation were developed
for MFIX. Performance analysis was carried out to identify the time-
consuming routines.

• After instrumentation with OpenMP directives, performance analysis
shows an efficiency of 87% on 8 threads for a 3D MFIX-DEM bubbling
fluidized bed with 80,000 particles.

• Hybrid parallelism (MPI + OpenMP) performance was evaluated for a
large scale system of 1.28 million particles in a 3D bubbling fluidized
bed on a large SMP cluster. The scaling analysis shows good
scalability for MFIX-DEM up to 128 processors (10,000
particles/processors) with an efficiency of 75%.

• The validation of MFIX-DEM shows that the parallel simulation does
not alter the accuracy of the solution.

‹#›

Future Work

• FY13 –

– Further scaling analysis for large scale DEM system

by hybrid (MPI+OpenMP) parallel programming on

large processor counts

– Investigate MPPIC model with OpenMP directives

• FW – Extend to co-processing architectures (GPUs,

Intel-MIC)

‹#›

Publications

• [1] Handan Liu, Danesh Tafti and Tingwen Li. Hybrid Parallelism in MFIX
CFD-DEM using OpenMP. Powder Technology. Under review.

• [2] Handan Liu, Danesh Tafti. Summary Report for MFIX Acceleration.
Dec. 2012. Project Title: MFIX acceleration (number: 683.232.001).

• [3] Handan Liu, Danesh Tafti. Summary Report for MFIX Acceleration on
New Code. March 2013. Project Title: MFIX acceleration (number:
683.232.001).

• [4] Handan Liu, Danesh Tafti. Summary Report for MFIX Acceleration on
MPPIC. August 2013. Project Title: MFIX acceleration (number:
683.232.001).

• [5] Pradeep G., Danesh Tafti. Development of parallel DEM for the open
source code MFIX. Powder Technology, 235 (2013) 33-41.

• [6] Amit Amritkar, Danesh Tafti, Rui Liu, Rick Kufrin, Barbara Chapman.
OpenMP parallelism for fluid and fluid-particulate systems. Parallel
Computing, 38 (2012) 501-517.

Thank You !

Questions?

‹#›

Supplement

‹#›

Scaling Analysis – Exclusive Time

• As number of processors
increases time required for MPI
communication increases

• For 16 processors
hydrodynamic solver takes
most of the time

• For 144 processors interface
exchange takes 40% and MPI
collective communication takes
28% of total time

Pradeep Gopalakrishnan, Danesh Tafti,
Parallelization of Discrete Element Method, ORD
2.672.232.001.000 Merit Review, April 26, 2011

	Development of OpenMP Parallelization for MFIX-DEM
	Motivation / Objectives
	Method
	Initial Performance Evaluation – Exclusive Time
	Major Routines for OpenMP Parallelization
	Typical Problems for OpenMP Parallelization�in MFIX-DEM
	Data-Sharing Attributes in OpenMP Program
	A Typical OpenMP Example in MFIX-DEM
	Another Typical Problem with OpenMP in MFIX-DEM
	Another Typical OpenMP Example in MFIX-DEM
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Validation
	Summary
	Future Work
	Publications
	Supplement
	Scaling Analysis – Exclusive Time

