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Motivation 

• Conventional DEM-CFD framework uses a single grid 
approach. 

 
• Particles require coarser grid to maintain smoothness in local 

solid volume fraction and avoid instability. 
 
• Fine scale fluid features like turbulence, wall shear stress and 

heat transfer coefficient at immersed surfaces require finer 
grids for better resolution. 

 
• Difficult to resolve flows with large sized particles and high 

flow velocities like jets in jetting fluidized beds. 
 
• Difficult to resolve small geometrical features influencing the 

flow with conventional DEM-CFD framework.  
 
 

Coarse Grid 

Fine Grid 
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Objectives 

• Develop and implement the two-grid framework for DEM-
CFD in our in-house code GenIDLEST. 

 
• Perform and validate two-grid simulations, not possible 

with single grid framework on jetting fluidized bed setup. 
 

• Avoid instability faced in single grid framework for flow 
conditions like jets, if the particle size  becomes 
comparable to jet size in jetting fluidized beds. 
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Methodology 

• Soft Sphere DEM 
 
• Linear Spring-Mass Dashpot  
 
 

 
• Model B (Gidaspow) 

 
 
 
• Ergun, Wen & Yu Drag Correlations 
 
 
 
 
• Fractional Step Time Marching 
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Two-grid formulation 

Continuity and 
momentum 

equations are 
solved in fine fluid 

grid 

Fluid velocities are 
mapped  from fluid 

grid to coarser 
particle grid 

Particles are 
advanced in time 
and void fractions 
are calculated in 

the coarser particle 
grid 

Drag forces on the 
particles are 

calculated in the 
particle grid 

Drag forces and 
void fractions are 

mapped  back from 
coarser particle grid 

to finer fluid grid 

Flow diagram of fluid-particle grid mapping in two-grid framework 
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Computational Details 

• 3D simulations performed on a small lab scale 
fluidized bed setup*. 

Distributor plate design (Dimensions are in mm) 

*Brown, L. S. and Y. B. Lattimer , "Experimental Hydrodynamics of Multiple Jet Systems in a 
Fluidized and Spouted Bed."  International Journal of Multiphase Flow, submitted. 
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Particle and DEM Properties 

Particle properties 
Material Glass 
Diameter  750 microns 
Number of particles 50,000 
Density 2500 kg/m3 
Coefficient of friction 0.10 
Minimum fluidization velocity 0.43 m/s 
Spring constant (kn,kt) 800 N/m 
Coefficient of restitution 0.90 
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Grid Details 

Jet details 
Number of jets 1,2 and 3 
Superficial velocity 0.699 m/s(1.60Umf), 1.294 m/s(3Umf) 
Jet width 1.6 mm 

Fluid grid details 
Along height 200 cells (Δy=1.40 mm) 

Along width 175 cells (Δx=0.322 mm) 
Along depth 4 cells (Δz=1.2375 mm) 

Particle grid details 
Δx = Δy = Δz = 3dp = 2.25 mm Fluid grid size for single grid 

framework 

Velocity outlet 

Wall Wall 

Wall 

Velocity inlet 
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Results – Single Jet 1.60 Umf 
(Time averaged for 3 s) 

Void Fraction Contour Velocity Vectors (colored by velocity magnitude) 

Simulation Experiment Simulation Experiment 

• The results are time averaged for 3 seconds after the first 5 seconds. 
• The experimental velocity vectors inside the jet are masked as the PIV resolution 
     is not sufficient to capture the high particle velocities inside the jet. 
• Void fractions compare closely to the experiment.  
• Dead zones are higher in experiment compared to simulation. 
   

Dead Zones 
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Results – Single Jet 3.0 Umf 
(Time averaged for 3 s) 

Void Fraction Contour Velocity Vectors (colored by velocity magnitude) 
 

Simulation Experiment Simulation Experiment 

• Fountain formation can be seen in both the experiment and simulation. 
• The simulation over predicts the fountain height. 
• This is due to higher particle-wall friction present in experiment. 
• High central particle velocities can be seen in the simulation. 
   

Dead Zones 
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Results – Single Jet 
3.0 Umf with higher wall friction 

(Time averaged for 3 s)  
Void Fraction Contour Comparison of Velocity Vectors (colored by velocity magnitude) 

 

Simulation Experiment Simulation with wall-particle 
Friction coeff. = 0.5 

• A single case to test the effect of wall-particle friction has been shown. 
• The wall-particle friction coefficient has been increased to 0.5 from 0.1. 
• The cluster of particles/fountain has come down and compares closely with 
     experiment.  
• A slightly higher dead zone formation can be observed in the velocity vectors. 
   

Simulation with wall-particle 
Friction coeff. = 0.1 
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Results – Multiple Jets 3.0 Umf 
(Time averaged for 3 s) 

Void Fraction Contour (Double Jets) 

Simulation Experiment Simulation Experiment 

• Experimental PIV is not suited to capture velocity vectors for multiple jets. 
• Void fraction profiles compare well with the experiments. 
• Parabolic void fraction profiles can be seen for both the simulations and experiments. 
• Lower wall-particle friction leads to smaller dead zones in the simulations. 
• Bed expansion is comparable with the experiments. 
   

Void Fraction Contour (Triple Jets) 



High Performance Computational Fluid-Thermal Sciences & Engineering Lab 

Conclusions 

• The commonly used single grid approach in coupled CFD-DEM calculations 
is limited by the requirement of having coarser fluid grid for stability.  
 

• To overcome this limitation, a two-grid method has been implemented and 
tested on jetting fluidized beds. 
 

• For the 3 Umf and single jet case, DEM predicts a higher fountain height 
compared to the experiment. 
 

• Much better agreement of the predicted fountain height with the experiment 
is achieved with a higher wall-particle friction coefficient. 
 

• Overall, the trends predicted by the two-grid scheme are in agreement with 
experimental observations, particularly for multiple jets. The  single grid 
framework was tried with this setup and it became unstable. 
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THANK YOU                                    
Questions? 
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