Workshop on Multiphase Flow Science August 6-7, 2013

A Two Grid Formulation for Fluid-Particle Systems using the Discrete Element Method.

Surya Deb Dr. Danesh Tafti Mechanical Engineering Department, Virginia Tech Blacksburg, VA 24061

and APPLIED SCIENCE at Virginia Tech

Virginia

Outline

- Motivation
- Objectives
- Methodology
- Two Grid Formulation
- Results
- Conclusion

Motivation

High Performance Computational Fluid-Thermal Sciences & Engineering Lab

- Conventional DEM-CFD framework uses a single grid approach.
- Particles require coarser grid to maintain smoothness in local solid volume fraction and avoid instability.
- Fine scale fluid features like turbulence, wall shear stress and heat transfer coefficient at immersed surfaces require finer grids for better resolution.
- Difficult to resolve flows with large sized particles and high flow velocities like jets in jetting fluidized beds.
- Difficult to resolve small geometrical features influencing the flow with conventional DEM-CFD framework.

Virginia

ech

Coarse Grid

Objectives

- Develop and implement the two-grid framework for DEM-CFD in our in-house code GenIDLEST.
- Perform and validate two-grid simulations, not possible with single grid framework on jetting fluidized bed setup.
- Avoid instability faced in single grid framework for flow conditions like jets, if the particle size becomes comparable to jet size in jetting fluidized beds.

Virginia

Methodology

- Soft Sphere DEM
- Linear Spring-Mass Dashpot Normal Force $\vec{f}_{n,pq} = -k_n \vec{\delta}_{n,pq} - \eta_n \vec{v}_{n,pq}$ Tangential Force $\vec{f}_{t,pq} = -k_t \vec{\delta}_{t,pq} - \eta_t \vec{v}_{t,pq}$
- Model B (Gidaspow)

Continuity

Virginia

lèch

Force
$$f_{t,pq} = -k_t \delta_{t,pq} - \eta_t \vec{v}_{t,pq}$$

(Gidaspow)
 $\nabla . (\epsilon \rho_g \vec{u}) = 0$
 η_n slider
 η_n slider
Particle p
Particle p

Ž

 k_t

Momentum
$$\frac{\partial(\varepsilon\rho_{g}\vec{u})}{\partial t} + \nabla \cdot \left(\varepsilon\rho_{g}\vec{u}\vec{u}\right) = -\nabla p + \nabla \cdot \left(\varepsilon\overline{\tau}_{g}\right) - \frac{1}{V_{fluid_{cell}}} \sum_{N} \frac{V_{p}\beta}{(1-\varepsilon)} \left(\vec{u} - \vec{v}_{p}\right) + \rho_{g}\vec{g}$$

Ergun, Wen & Yu Drag Correlations

Ergun, 1952
$$\beta = 150 \frac{(1-\varepsilon)^2 \mu_g}{\varepsilon d_p^2} + 1.75 (1-\varepsilon) \frac{\rho_g}{d_p} \left| \vec{u} - \vec{v}_p \right| if \left(\varepsilon < 0.8 \right)$$

Wen and Yu, 1966 $\beta = \frac{3}{4} C_D \frac{\varepsilon (1-\varepsilon)}{d_p} \rho_g \left| \vec{u} - \vec{v}_p \right| \varepsilon^{-2.65} if \left(\varepsilon \ge 0.8 \right)$

Fractional Step Time Marching

Two-grid formulation

Computational Details

 3D simulations performed on a small lab scale fluidized bed setup*.

Particle and DEM Properties

Particle properties	
Material	Glass
Diameter	750 microns
Number of particles	50,000
Density	2500 kg/m ³
Coefficient of friction	0.10
Minimum fluidization velocity	0.43 m/s
Spring constant (k _n ,k _t)	800 N/m
Coefficient of restitution	0.90

Virginia

Tech

Grid Details

Jet details				
Number of jets	1,2 and 3	3		
Superficial velocity	0.699 m/	/s(1.60U _{mf}), 1.294 m/s(3U _{mf})		
Jet width	1.6 mm			
Fluid grid details				
Along height	200 cells (Δy=1.40 mm)			Velocity outlet
Along width	175 cells (Δx=0.322 mm)			
Along depth	4 cells (Δz=1.2375 mm)			Wall
Particle grid details			Wall	
$\Delta x = \Delta y = \Delta z = 3d_p = 2$.25 mm	Fluid grid size for single grid framework		
irginia				Velocity inlet

Tech

Results – Single Jet 1.60 U_{mf} (Time averaged for 3 s)

- The results are time averaged for 3 seconds after the first 5 seconds.
- The experimental velocity vectors inside the jet are masked as the PIV resolution is not sufficient to capture the high particle velocities inside the jet.
- Void fractions compare closely to the experiment.
- Dead zones are higher in experiment compared to simulation.

Virginia

Results – Single Jet 3.0 U_{mf} (Time averaged for 3 s)

- Fountain formation can be seen in both the experiment and simulation.
- The simulation over predicts the fountain height.

Virginia

lech

- This is due to higher particle-wall friction present in experiment.
- High central particle velocities can be seen in the simulation.

Results – Single Jet 3.0 U_{mf} with higher wall friction (Time averaged for 3 s)

- A single case to test the effect of wall-particle friction has been shown.
- The wall-particle friction coefficient has been increased to 0.5 from 0.1.
- The cluster of particles/fountain has come down and compares closely with experiment.

A slightly higher dead zone formation can be observed in the velocity vectors.
 Virginia
 Tech

Results – Multiple Jets 3.0 U_{mf} (Time averaged for 3 s)

- Experimental PIV is not suited to capture velocity vectors for multiple jets.
- Void fraction profiles compare well with the experiments.
- Parabolic void fraction profiles can be seen for both the simulations and experiments.
- Lower wall-particle friction leads to smaller dead zones in the simulations.
- Bed expansion is comparable with the experiments.

Virginia IIII Tech

Conclusions

- The commonly used single grid approach in coupled CFD-DEM calculations is limited by the requirement of having coarser fluid grid for stability.
- To overcome this limitation, a two-grid method has been implemented and tested on jetting fluidized beds.
- For the 3 U_{mf} and single jet case, DEM predicts a higher fountain height compared to the experiment.
- Much better agreement of the predicted fountain height with the experiment is achieved with a higher wall-particle friction coefficient.
- Overall, the trends predicted by the two-grid scheme are in agreement with experimental observations, particularly for multiple jets. The single grid framework was tried with this setup and it became unstable.

Virginia

ſech

THANK YOU Questions?

