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Polydisperse Flows

Poly dispersity or distributed properties such as size and density of particles,
droplets bubbles and cells occurs in significant number of chemical and

biological processes. In this research , numerical simulation of the following
two cases was studies:

Case 1:

Growth Problem with No Diffusion (Application of FCMOM in Solid Phase
Density Variation in a Reactive Riser Flow)

Case 2

Inhomogeneous Particle Aggregation (Coalescence of water droplets in an
oil-water emulsion, and Numerical verification against QMOM model)

Population balances describes temporal and spatial evolution of the

distributed properties.
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Coupled CFD —Population Balance Model

CFED
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Ref: Abbasi and Arastoopour, 2012, 2013
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Definitions

Postulate: Number density function f (&; X, t)

- External Coordinate (x)

spatial position of the particle.

- Internal Coordinate (&)

particle property (i.e. particle size, density, temperature,...)



ILLINOIS INSTITUTE
OF TECHNOLOGY

What is the Population Balance Equation?
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Accumulation term + Convection term + diffusive term + Growth term = Integral

Source term

Integro-Partial Differential Equation | + Closure Problem!
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Finite size domain Complete set of trial functions Method Of Moments: FCMOM

{é: - [é:min (t) + é:max (t)] / 2}
> Solution in terms of both Moments and size distribution

> f(&x,t) will be approximated by expansion based on a complete set of trial
functions
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Ref: Strumendo, Arastoopour, 2008



Case1
Growth Problem with No Diffusion

Application of FCMOM in Solid Phase Density Variation in a Reactive Riser Flow
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Growth Problem with No Diffusion
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Reactive Riser Flow

Carbonation of Metal Carbonates
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Yi et al., International journal of greenhouse gas control, 2007.
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Constant Density Growth (Reaction) and convection
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Boundary Conditions

Gas inlet velocity

0.5 m/s
SOlId |ﬂ|€t VElOCity Dimensionless Inlet
distribution
0.15 m/s 8 |
Outlet pressure :
§ 4
1 atm 5 >
Moments inlet values 2.
B Partic_ltt]e.i)ensit'? {DimeErll.:i}onlesslll
Minimum Density Maximum Density Mean Density

2000 kg/m3 2500 kg/m3 2125 kg/m3



Results at t= 5 sec with an Arbitrary constant Reaction Rate

oo A 4 |7
Solid Volume Mean Solid
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Results at t= 5 sec with an Arbitrary constant Reaction Rate

-a0.ay

15t moment of 2" moment of
distribution distribution




Case 2
Inhomogeneous Particle Aggregation

Coalescence of water droplets in an oil-water emulsion, and Numerical
verification against QMOM model
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Homogeneous Particle Aggregation

Continuous Smoluchowski Equation (CSE)

6f(\étx 1) ljﬁ(\, n.)-f (v=,0).f (i, t)dy — £ (v, t)jﬁ(v 7)-f(7.t)dn

Finite Smoluchowski Equation (FSE)

af(\(;txt) EH(\, 2me) Iﬁ(v n,n).f(v-n,1).f (;7,t)dn

W HI Vs V) V] T PORICRL,

Vip and v, are set initially.

Introducing Heaviside step function, aggregations leading to particles greater
than v ., are neglected.

For v.;,=0 and large enough v, solution of FSE converges to CSE.

Ref: Strumendo, Arastoopour, 2008
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Inhomogeneous Particle Aggregation
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Coalescence of water droplets in an oil-water LN INSTITUTE
emulsion in BFS
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Water in Oil Emulsion
Inlet condition: 5% water content Re= 500 dio=12.5 um
1 v,,1 V
inlet size distribution: f(V,0)=a.(=+2)".(=—>)°"
(v,0) (2 2) (2 2)

Aggregation Kernel:  g(v,n) = B, (v+17) Simulation time: 1 sec

Abbasi and Arastoopour, 2013



ILLINOIS INSTITUTE
OF TECHNOLOGY

Numerical verification against QMOM model (Mesh size)

Instantaneous Mean Droplet size contours at t= 1 sec
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Numerical verification against QMOM model (cont’d)
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Concluding and Remarks

Coupling and Implementation of FCMOM in ANSYS Fluent was
successful.

The method is fast, computationally effective and stable.
Provides both moments and reconstructed distribution
function.

FCMOM is an excellent choice when the actual distribution is
Important.

Computational time is same as QMOM for the same number of
moments.
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Open Issues/Future work

Particulate phase velocity (moments convection) is
iIndependent of internal coordinate.

Discretization is limited to First-order schemes.
First-order scheme introduces Numerical diffusion.

In aggregation problems higher order moments

(i >6 ) are not stable.

Future work will be focused on a method to overcome
the above mentioned problem.
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Results at t= 5 sec with an Arbitrary constant Reaction Rate
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