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Introduction and background

Background and motivations

Eulerian multiphase models for gas-particle flows
@ Widely used in both academia and industry
e Computationally efficient

e Directly provide averaged quantities of interest in design and
optimization studies

Need of uncertainty quantification

@ Study how the models propagate uncertainty from inputs to outputs

Main objectives
@ Develop an efficient quadrature-based UQ procedure
@ Develop a reconstruction procedure for the PDF of the system response

@ Apply such a procedure to multiphase gas-particle flow simulations
considering parameters of interest in applications

y
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Introduction and background

Typical steps in a simulation project with MFIX

Specify model
Define model parameters (phase
geometry properties, sub-
models)

MFIX

Time average
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Introduction and background

Models and uncertainty

@ Models present a strongly non-linear relation between inputs and outputs

@ Input parameters are affected by uncertainty
e Experimental inputs

o Experimental errors
e Difficult measurements

e Theoretical assumptions
@ Model assumptions might introduce uncertainty
@ Need to quantify the effect of uncertainty on the simulation results
e Uncertainty propagation from inputs to outputs of the model
e Multiphase models are complex: non-intrusive approach
@ Generate a set of samples of the results of the original models
@ Use the information collected from samples to calculate statistics of the

system response
@ Reconstruct the distribution of the system response
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Foundation of quadrature-based uncertainty quantification

Quadrature-based sampling - 1D case

@ We start considering a simplified case
e Probability space P (2, F, P), with ) a sample space, F a o-algebra and P
a probability measure.
e One random variable (uncertain parameter) £
o A random process u(¢, x) (our model)

@ The objective is to compute the moments of the random process:

m, = / u(€,2)"p(€)de
Q

Direct quadrature approach
e Sample (2 using Gaussian quadrature formulae

o Evaluate the model in correspondence of each quadrature node (find
abscissae)

@ Approximate moments directly in terms of the quadrature weights and
abscissae

y
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Foundation of quadrature-based uncertainty quantification

Moments of the system response

e If p(&) is considered as the weight function of a Gaussian quadrature
formula, the moments about the origin of the response can be
approximated as

o= [ u(€x)p(€)dg = Zwl (&,

being
e M the number of nodes
o w;(x) the quadrature weights
e ¢ the quadrature nodes

Weight functions

The form of p(§) depends on the assumed probability distribution function of
the uncertain parameter (uniform, Gaussian, ...)
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Foundation of quadrature-based uncertainty quantification

Quadrature-based sampling - Multidimensional case

@ Sampling procedure for a case with two random variables & = {{;, &}

P, &)
”éE)

tlly

Use conditional moments (£});, to

Find weights n;, and nodes .
& h 3K find weights n;, ;, and nodes &>y, 1,

Moments of the system response

M, M,

OdE =D "> mymy gy [u(€rns Q0]

Lh=1h=1

Uncertainty quantification NETL Multiphase Workshop 2013 11/35



Foundation of quadrature-based uncertainty quantification

PDF reconstruction - One-dimensional case

@ The foundation of the method:

sza"&/ﬁ

i=1

where

e N is the number of non-negative kernel functions
e p; is the i-th quadrature weight used in the PDF reconstruction
e 0, (K, K;) is the kernel density function

@ The choice of the kernel density function d,(k, x;)
e Beta kernel function: x on bounded interval [a, b]
e Gamma kernel function: positive s on [0, +00]
e Gaussian distribution: s on the whole real set

@ The key advantage of the method

e The reconstructed PDF can be used to determine the probability of critical
events, like for kK > Keuoff
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9 Applications
@ Developing channel flow
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Applications Developing channel flow

Devel

oping channel flow

Mesh: 65 x 256 cells
Steady state solution

Convergence criterion:
residuals below 1.0x107!2

Incompressible solver:
simpleFoam
(OpenFOAM®))

ua, X. Hu, R. O. Fox (ISU)

Uncertainty quantification

Properties
e L/D=6
e Re = DU /vy = 81.24
e o(rv) =03

@ Uniform inlet
(Le Maitre et. al., 2011)

Performed study

@ Convergence of the
moments

@ Statistics of the response

@ Reconstruction of the PDF
of system response
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Developing channel flow
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Conclusions

@ The approximate distributions show good agreement with the histograms
obtained from 1000 samples

@ Four nodes are enough to reconstruct the axial velocity distribution
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LUICEIGIEEN  Oblique shock problem

The oblique shock problem

y, @ Mesh: 640 x 320 cells
7 Oblique shock @ Unsteady simulation (max
] CFL =0.2)
] \ @ Compressible solver:
” rhoCentralFoam
(OpenFOAM®)) )
Properties
e Ma=|U|/a=3 Performed study
e Ma € [2.7,3.3] @ Statistics of the response
Ma? sin? S—1 @ Reconstruction of the PDF
o tanf =2cot b —Frm
ﬁMa (v+eos(26)+2 of system response )
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Oblique shock problem
The oblique shock problem: in the shock

——histogram ——histogram
25 — Approximate Distribution 25 — Approximate Distribution
| © EQMOM nodes | © EQMOM nodes

---Distribution of each node . ---Distribution of each node

0.5

34 GZ.Z 3.4

x =1.94, y =0.65, 4 nodes x =1.94, y =0.65, 6 nodes

Conclusions
@ The distribution displays a step function profile
@ The approximate distribution shows some oscillations

@ Increasing the number of EQMOM nodes leads to a reduction of the
oscillatory behavior
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The oblique shock problem: in the shock

—-histogram —-histogram
— Approximate Distribution — Approximate Distribution

25 o EQMOM nodes o EQMOM nodes

---Distribution of each node R ---Distribution of each node

34

x =1.94, y =0.60, 4 nodes x =1.94, y =0.60, 5 nodes

Conclusions
@ The reconstruction of the PDF improves slightly when the number of
EQMOM nodes increases
@ Increasing the number of EQMOM nodes requires higher order moments
to be computed, whose accuracy decreases with the order

@ Considering both the calculation accuracy and the shape of the
reconstructed PDFs, four nodes are adequate

4
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Oblique shock problem
The oblique shock problem: below the shock

3 3
-~ histogram ——histogram
— Approximate Distribution — Approximate Distribution
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X
x =1.94, y = 0.30, 4 nodes x = 1.94, y =0.30, 6 nodes

Conclusions
@ The approximate distributions show good consistency with the
histograms

@ Increasing the number of EQMOM nodes does not significantly
influence the quality of the reconstruction

Uncertainty quantification NETL Multiphase Workshop 2013 21/35



Outline

9 Applications
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Packed bed heterogeneous catalytic reactor
Packed bed heterogeneous catalytic reactor

@ Packed bed heterogeneous catalytic reactor

@ The concentration profile is

kL
U = @ = exp <—§>
v

@ Isothermal condition Co
@ First order reaction Rg = kCp @ Two uncertain parameters
@ Reaction rate coefficient e Landv
k= 0.7min~" o Bivariate Gaussian
. . . distribution )
@ Neglected axial diffusion
e Normalized position £ = x/L )
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The 2D test case

@ The joint PDF is

P(V,L) =

Z
exp | ———~
2w,/ 1 — p? [ 2(1 - PZ)]

where
_ v=w)  2p(v=w)(L—Ly) (L=Ly)
= o? - o0 + o?

o Ly =20m, 07 = 0.81; vp = 14m/min, 02 = 0.64
e Correlation coefficient p = 0,0.5,0.95

@ The covariance matrix is

5 05 pPOLOL
pPoOyOL Uz
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The 2D test case

e Moments of the output at the exit ({ = 1) are calculated

o Gauss-Hermite quadrature method
o CQMOM

@ Relative errors are computed, assuming moments obtained by
Gauss-Hermite quadrature method with 30 x 30 nodes are exact

my . (&) — m§0,3o(f )

en (&) =
Mo M3 30(§)

@ N, and Ny of CQMOM are directly calculated by adaptive Wheeler
algorithm, not the maximum number of nodes user provided

@ Relative errors obtained with different correlation coefficients p are listed

qua, X. Hu, R. O. Fox (ISU) Uncertainty quantification NETL Multiphase Workshop 2013 25/35



The 2D test case

: convergence of the moments

e p=0

CQMOM G-H quadrature
n e, 4(1) es4(1) e75(1) €s55(1)
0 2220x 10710 2220x 10-1© 8.882 x 1010 0
1 5475x 10710 4905 x 1072 1.184 x 10711 4.891 x 1072
2 8.673x 10710 1.158 x 1071 1.698 x 10710 1436 x 10!
3 8408 x 10710 8491 x 107 6.172x 107°  1.750 x 10~ 1!
4 3352x107° 6.857x1071 9100 x 107  3.539 x 10~
5 8542x 1077 3.725x 1072 6.190x 1077 3.128 x 10~ 1!
6 1483 x107% 1.560x 1078 2901 x 107° 6.094 x 10~
7 3867x107% 5231 x10°% 1.084x 1075 2.521 x 10710
8 1.246x 1077 1.479x 1077 3487 x107°  1.341 x 107°
9 3551 x1077 3.675x 1077 0 3.944 x 107°

A. Passalacqua, X. Hu, R. O. Fox (ISU)

Table : Relative errors of zeroth to ninth order moment of the output
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LOICEIGIEIN  Packed bed heterogeneous catalytic reactor

The 2D test case

: convergence of the moments

e p=05

CQMOM G-H quadrature
n e, 4(1) es4(1) eg3(1) €s55(1)
0 2220x 10710 0 1.110 x 1010 0
1 2149 x 10710 5153 x 1072 3.102 x 107! 5.145 x 1072
2 2500x 10719 7550 x 10713 1.952x107° 3.532x 1013
3 2144 x107° 2543 x 10712 2192x 1078 1.325x 101!
4 9.023x1077 1.582x10719 1213 x1077 6.613 x 10712
5 2812x107% 9.883x 10710 4558 x 1077 2.062 x 101!
6 7.920x 1078  4.126 x 1072  1.339x 107° 5.293 x 10~
7 2016 x 1077 1384 x 1078 3321 x10°® 1.010 x 10710
8 4.629x 1077 3975x107% 7272x107°% 2.636 x 10710
9 9687 x1077 1.012x 1077 1.448 x 10> 8.231 x 10710

Table : Relative errors of zeroth to ninth order moment of the output

A. Passalacqua, X. Hu, R. O. Fox (ISU)
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LOICEIGIEIN  Packed bed heterogeneous catalytic reactor

The 2D test case

: convergence of the moments

e p=20.95

CQMOM G-H quadrature
n €;,(1) €55(1) €s3(1) es55(1)
0 0 2.220 x 10716 2.220 x 10~ 1° 0
1 3.120x 1072 2247 x 1072 2375 x 10712 2297 x 1072
2 5343 x 1078 7513 x 10712 3.060 x 10~ 3.280 x 10712
3 2.695x 1077 5526 x 10711 9920 x 1011 6.539 x 10712
4 8479x 1077 2775x 10710 9.163 x 107" 4.752 x 10712
5 2061 x107° 1.034x107° 4289 x 10710 8871 x 10~13
6 4257 x107% 3.064 x 107° 2472 x 1072 7.642 x 10712
7 7.854x 107 7.684x107° 7.937x107? 1273 x 10~
8 1.334x107° 1.703x 1078 2.000x 10°% 1.416 x 107!
9 2.129x 1077 3432x107% 4355x10°% 1.104 x 10~

Table : Relative errors of zeroth to ninth order moment of the output

A. Passalacqua, X. Hu, R. O. Fox (ISU)

Uncertainty quantification

NETL Multiphase Workshop 2013

28/35



Packed bed heterogeneous catalytic reactor
The 2D test case: summary

@ Moments converge rapidly for both methods (less than 5 x 5 nodes)

@ Relative errors of moments calculated by CQMOM are slightly larger
than those obtained by Gauss-Hermite quadrature method

o CQMOM provides an accurate method when only pure moments of the
joint PDF of the inputs are known
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Packed bed heterogeneous catalytic reactor
Reconstruction of the 2D joint PDF

@ Method for correlation coefficient p = 0
(Chalons et al., 2010; Vié et al., 2011)

e For non-zero p: extended conditional quadrature method of moments
(ECQMOM)

@ Reconstruct the bivariate Gaussian distribution of the uncertain inputs of
the 2D test case (v and L) using ECQMOM

fio(v,L) = Zwagvva,m Zwaﬁg —1(v); Lag, 024)

where g is the standard Gaussian distribution

g(x;p,0) = 127TeXp <_(x—u)2)

202
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Packed bed heterogeneous catalytic reactor
Reconstrunction of the 2D joint PDF

p=0.5 p=0.95

e Find o, weights w; and w;, and nodes v; and v; in the v direction
@ Solve for conditional moments /%
e Find 0y, weights w,3, and nodes L, g in the L direction

@ 2D Gaussian ECQMOM provides an accurate method to reconstruct the
joint PDF
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Future work

@ Development of automation tools for pre- and post-processing of the
MFIX data

@ Applications to gas-particle flow in fluidized beds and risers
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Future work
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Future work

Thanks for your attention!

Questions?
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