

A Comparison of QUICKER with Conventional Meta-Modeling Methods for Input Uncertainty Propagation

Adam Donato¹, Ranga Pitchumani¹, Aytekin Gel²

¹Advanced Materials and Technologies Laboratory Department of Mechanical Engineering, Virginia Tech Blacksburg, Virginia 24061-0238

²ALPEMI Consulting, LLC Phoenix, AZ 85044 adonato@vt.edu • pitchu@vt.edu • aike@alpemi.edu Presented at the NETL Workshop on Multiphase Flow Science August 6th, 2013

Motivation for QUICKER

- Most engineering systems have some degree of uncertainty in their input parameters
- **O** Quantifying this uncertainty is computationally expensive

Objective of QUICKER

 Develop a non-intrusive method for propagating input uncertainty that is less computationally expensive than conventional methods

The inherent uncertainty of input parameters for a nonlinear computational model results in variability in the measured outputs.

Meta-model methods allow for rapid sampling from the response surface instead of the full computational simulation

Meta-models scale poorly with Only three sample points are necessary to define the location (μ), shape (σ), and shift (θ) of the output distribution

The output from QUICKER is always 1-D, and thus scales easily

QUICKER Methodology

3. Determine *shape*

of output distribution

 $\frac{\left(\mu - f(x_1)\right) + \left(\mu - f(x_3)\right)}{2 * N} = \boldsymbol{\sigma}$

distributions

 $f(\mathbf{x}_4) = \boldsymbol{\mu}_L$

6. Determine secondary

1. Select input data points

2. Determine *location* of output distribution $f(x_2) = \boldsymbol{\mu}$ f(x) represents the nonlinear

> 4. Determine *shift* of output distribution

 $f(0) = \boldsymbol{\theta}$

 $\frac{\mu_L - f(x_1) + \mu_L - f(x_2)}{2*N} = \boldsymbol{\sigma}_L$ 5a. $\sigma < 0$ Population Lognormal[$\mu - \theta$, $|\sigma|$] 7. Weighted average of $f(x_5) = \mu_H$ output distributions $\frac{\mu_H - f(x_2) + \mu_L - f(x_3)}{2*N} = \boldsymbol{\sigma}_H$ 0.8 0.6 5b. $\sigma > 0$ 0.4 Lognormal[$f_{max} - \mu$, $|\sigma|$] 0.2 2 Advanced Materials and Technologies Laboratory

Meta-models vs. QUICKER

The output from QUICKER remains constant, but the meta-model's output is affected poorly by increased dimensionality

Computational Scenarios

Circulating fluidized bed 3 uncertain input parameters

Turbulent fluidized bed

11 uncertain input parameters

Circulating Fluidized Bed Results

3 Uncertain Input Parameters

Advanced Materials and Technologies Laboratory

Turbulent Fluidized Bed Results

Advanced Materials and Technologies Laboratory

Future Work

QUICKER for correlated input distributions

- **O** For when multiple uncertain inputs have some mutual dependence
 - (e.g. proximate and ultimate analysis of coal)

QUICKER for epistemic uncertainty

• For when the distribution of a given input distribution is not fully known or defined

Overview and Acknowledgements

Meta-models scale poorly because they require the dimensionality of the response surface to match the number of inputs.

QUICKER scales well because the output distribution is always 1-D.

Support from the U.S. Department of Energy, National Energy Technology Laboratory (NETL), is gratefully acknowledged

QUICKER Methodology Extended

Multiple input parameters

 x_3

*y*₃

 Z_3

1. Select input data points

 $\boldsymbol{x_2}$

 y_2

 \mathbf{Z}_2

 x_1

 Z_1

2. Determine *location* of output distribution

 $f(x_2, y_2, z_2) = \boldsymbol{\mu}$

3. Determine *shape* of output distribution with Orthogonal Arrays

$$\frac{u - f\begin{pmatrix} x_1, y_1, z_1 \\ x_1, y_3, z_3 \\ x_3, y_1, z_3 \\ x_3, y_3, z_1 \end{pmatrix}}{4 * N} = \boldsymbol{\sigma}$$

Cholesky decomposition can be used to correlate inputs

4. Determine *shift* of output distribution $f(0,0,0) = \theta$

Non-Gaussian input parameters x_2 x_3 x_1 x_2 x_3 x_1 $\boldsymbol{x_2}$ $\boldsymbol{x_{7}}$ x_3 x_3 x_1