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Gas-Particle Model Hierarchy

Full Direct Numerical Simulation (DNS)
Hybrid DNS-Discrete Element Model (DNS-DEM)

Two-Fluid Model (e.g., MFIX):

Microscopic equations are averaged (spatial,
ensemble) to obtain a granular fluid,
characterized by a granular temperature.

TRANSIENT




Thoughts on steady-state calculations

The vast majority of single-phase CFD
calculations are time-steady.

Transient calculations are very computationally
costly ... and lengthy even if they are affordably.

Practically impossible to do scoping studies
based on transient calculations.

Coupling of CFD to process simulations requires
a “lower order model,” reduced from the full
transient model ... that is what will be provided.

Multiphase flows are inherently transient ... the

_ effects of which must be captured faithfully by a
ItuLbulence model.




General comments

Most work published is based on modifications
of gas phase turbulence theory... this probably
won’t work for dense flows.

Current approach ... turbulence is a property of a
fluid, so a granular continuum theory has to be
the starting point.

Utilize the concept of Favre-averaging,
introduced for compressible flows, to reduce the
closure “burden.”




Multiphase turbulence

Dilute flow - carrier-phase turbulence modulation
Eulerian-Lagrangian approaches

Single average approach

Avera e microscopic equations to obtain “two-fluid” equations

descri EJJmterpenetratlng continuum, characterized by:
gg o g US, Pg , @S , all functions of space and time.

Examine “fluctuations” of the microscopic variables.

Double average approach S .
Average again to obtain mean behavior Eg ; 53, Ug U

Slpgl®s

- U +U;,etc.




Single Average Approach
indicator function of fluid/particulate phase 1,

fluid/particulate phase fraction Eq/s =<|g/s>

conditional average of based on the
gas/particulate phase Wi <Ig/s\lj>/<|g/s>

g/s

€

turbulent fluctuations N
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MFIX Governing Equations

(Continuity equations)
gas phase, g:

O O
E(ggpg)"' &(ggpgugi): 0

solids phase, s:

0 0

a(gsps) a2 —(gspsusi)

OX.




MFIX Governing Equations

(Momentum equations)

gas phase, g:
%( ngUgi)"'@i(ggngnggi)
X;
Gl e
:_gga_'_ Ox e gS|+ ggpggl

solids phase, s:
9,

9,
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Kinetic Theory of Granular Flow
granular stress

1+e) JU,
Tsij ri- (_ P +( 2 ),le a jgij +2:usssij

g=3| L+ 2|2,
e QI O eiy = O -y OX o4

j i i

Pi—¢c 0.0 [1+ 2(1+ e)gsgo]

- _ C,Us fﬂs( )\/_@—): H, =C n f 1y (5 s )\/6:

R N



Kinetic Theory of Granular Flow
granular viscosities
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MFIX Governing Equations

(Granular temperature equation)
solids phase, s:
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Favre & Favre-like Averaging

Favre average: compressible gas

Favre, A., “Equations des gaz turbulents compressibles
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Favre-like average: two-fluid
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1699, 1988.

Physical meaning of Favre velocity

i il i o ~

U '_Usi i U_s’: U;’i:_gs’i: = g’U”/Es

Si s~ si

“The Favre velocity is a mean variable ... that
includes the velocity fluctuation correlated with
density fluctuation. (The Favre velocity fluctuation
is) ... only the part uncorrelated with density.”

Besnard, D.C., and F.H. Harlow, “Turbulence in
multiphase flow,” /nt. J. Multiphase Flow 14, 679-
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Notation

Dependent variables f(xt)

gs,gg,Usi,Ugi, Pg,®s
Reynolds means f (x) Favre means f (x)
ES
gg
USI T gsUsi/gs
Ugi iy ggUgi/Eg




Notation

Dependent variables f(xt)
U.,P.0.

gsigglu g|1 g!

Si?

Reynolds decomposition Favre decomposition
. (xt)=z,(x)+ &/ (xt)




ldentities
... following from the definitions




Continuity equations

Gas phase

0 %

E( gpg)+ 57( gnggi): 0

0 i %, Al
= E(pg ‘99)_" &(/)g 89U9i): 0

Solids phase
0 0

g(gsps) + _(55,05Usi) =0

OX.
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Gas Phase Momentum Equations
Instantaneous, local gas phase momentum equations

%) o
g p. U g U U
at( pg ) axj( pg )
oP OTis:
s tiE s Wy ey
OX. OX

Take the average (commutes with differentiation)

0
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Gas phase momentum equation
convective triple product - Favre average
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Gas phase momentum equation
convective triple product - Favre average
ggUgyUy (Ugj+Ugj)(Jgi+Ugi)
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Gas phase momentum equation
convective triple product - Favre average




Gas phase momentum equation
convective triple product - Reynolds average

gUgUg = (59 +‘9é)(ggj +U;j)(LTgi+Uéi)
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Gas phase momentum equation
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Solids Phase Momentum Equations

e(;t .00, )+a%( £.0,0,0, )




KTGF Granular Stress
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KTGF Granular Stress (cont.)

PO s O
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Kinetic Theory of Granular Flow
granular temperature equation
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Bia,) 3 dany0,) AL 1000 Ay s
2 ot 2 OX; OX: OX: OX;
Eé( sgs(:)S)+§ _Q_(ga A +EQ~)
2 81: 2pS aXJ S SJ S S T]
o 00 ouU . =
=—| Kk, —|+7,,—= + ]I, — p,&Jd
8XI( S aXI ) z-Slj aXJ S IOS SRS
/] 4 lLl~ a@)
05 = &U sj@s :__T__ Turbulent Granular Temperature Flux vector

ouU

Si

Dilatation & Solenoidal Dissipation



Specific Gas Phase

Turbulence Kinetic Energy

£ Sl 1 " /4
ggkg = E‘ggugiugi

Total kinetic energy of gas flow is nicely partitioned:

1 1 B JEtlE e =
Epggg(Ug)Z:Epggg(Ug+Ug)2 =Epggg(Ug)2+pgggkg

~

The first term is the energy density of the gas flow due to the
combined mean motion and turbulent motion correlated with the void fraction.

The second term is the gas energy density due to

the residual turblent motion, /.e., that not correlated with voidage fluctuations.
Besnard, D.C., and F.H. Harlow, 1988.

9 g

=%pggg (U + U’ )2 =72



Specific Solids Phase

Turbulence Kinetic Energy

Fk.= —£U0!
2

Total kinetic energy of solids flow is nicely partitioned:

1 i 1 #

Epsgs (Us)2 :Epsgs (Us W U:)Z :Epsgs (Us)z i psgsEs

~

The first term is the energy density of the granular flow due to the
combined mean motion and turbulent motion correlated with the solids fraction.

The second term is the solids energy density due to

the residual turblent motion, /.e., that not correlated with solids fluctuations.
Besnard, D.C., and F.H. Harlow, 1988.




Gas Phase Turbulence Kinetic Energy

Rate of change of Rate of change of
turbulence kinetic energy per unit mass turbulence Kinetic energy per unit mass
due to non-stationarity due to convection by the mean flow

EiQ%EJ%) 2 Eg;@%fbggjm)

Rate of production of Transport of
turbulence kinetic energy turbulence Kkinetic energy
from the meag\flow gradient due to the turbulence itself

a 43 7

~ r

§T~ @Ugi e 6 1 8 U”U”U”
Pe%e Tai o o, 28
J

J

s oP, 0T
etk e iR e s sl e —U”IgS,

OX, e ox Rk o

\ < / N i Y Rate of transfe_r of
Transport of Dissipation (gas phase) turbulence kinetic energy
turbulence kinetic energy to the granular phase

=gLe to the pressure fluctuations



Solids Phase Turbulence Kinetic Energy

Rate of change of
turbulence kinetic energy per unit mass
due to non-stationarity

/\
'l A\

Rate of change of
turbulence Kinetic energy per unit mass
due to convection by the mean flow

r

0
Al

‘ 9,
X;
Rate of production of
turbulence kinetic energy
from the mean flow gradient
iEe
— P& T
Sij 6Xj
/ /
=-g Ul —2—/+ g, Ul L
OX; OX;
TransE)fort of

turbulence kinetic energy
due to the pressure fluctuations

T st

N

gkU, )

Transport of
turbulence kinetic energy
due to the turbulence itself
6 1 4 " 4
— P& UgUgUg
6x 2
0T
Si
+eUl— +U”I i
OX. :
N : y Rate of transfer of
Dissipation (solids phase) turbulence kinetic energy

(not inelastic!) to the gas phase



Kinetic Energy Density of the Flow

Kinetic energy density of the gas phase

1
Ky= Eggng U

g~ gi

Kinetic energy density of the solids phase

K= 155,03U U

97 si™ si
2

Total kinetic energy density of the flow

1 1
KtOt (X’t): KQ 2 KS i Eggpgu Ui+ Egspsu U

gi— qi Si " si




Average Kinetic Energy Density
of the Gas Phase

L/ 1 1 " "
Kg:apgggugiugi Epg g(U +U XU9,+Ugi)
- 25 0,0, 425070, + 20707 )
_2109 g gi— gi g gi— gi g gi— gi
250,00, + 20707
_2109 g~ gigi g gi i
... measures the residual turbulent motion.
i 1 = (... ] _Besnard et al, 1992
K, :Epggg U -Ugi)+ Py €K,
energy density due to the combined mean
asity—correlated turbulent motion, 1

7 Al i " "
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bulence kinetic energy



Average Kinetic Energy Density

S~ si— si gi— qi gi—~ gi
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solids phase specific
turbulence kinetic energy




Average Kinetic Energy Density
of the Gas Phase

(alternative approach)

U] 1
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Kinetic Energy Budget

MFIX Documentabion
Theory Guide

Technical Note
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Correlations

Volume fraction fluctuation - velocity fluctuation correlations
gUy and U
Specific gas phase turbulence Reynolds/Favre stresses

4

4 4 2 —— 4 4
Drag related correlatlons
2 T r
/Bgs’ gi :_Ugl’
/ AI / A! AI 4 4 AI " "
gsﬂgs i _ggIBgs , /Bgs(U gi _Usi )’ and IBgs (U -Ug )

Stress related correlation g ek U”
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Closures
velocity & volume fraction

Using an eddy - viscosity type turbulence model

V Vie

U 9 vz and UL =~ B VE =4
G gy i &g ~ F s

O O

These correlations are proportional, but opposite in sign

| AR %
4 4 ts &g / 4
el —[ j gU -

VE,
G&S




Closures
velocity relations
Using the identities

~

U=t +5;U'i/§g and U, =U_ +elUl Jz.,

9

= Ve




To Do List

Extract dissipation, €,

Closures for ks & €,

Look at energy cascade
—Add-grantlartemperatureeguation—ecurrenthrne

Rikafdas I A e

—Indentify closures

Equation for the full stress tensor, T

Compare in detail with Reynolds formalism

Formulate drag terms for a chosen form

Include thermal temperatures

Chemistry (contacting)- hopefully temperature fluctuations
will be small

Develop closure relationships
... related to specific experimental data
(A NEVER ENDING TASK)




TOBBoCo@gmail.com, 304-816-6332, 1847 Joliet Way, Boulder, CO 80305
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