

Using Cylindrical Coordinates in the Simulation of Dense Particle-Gas Multi-Phase Flows

Akhilesh Bakshi, Christos Altantzis, Ahmed F. Ghoniem
Center for Energy and Propulsion Research
Department of Mechanical Engineering
Massachusetts Institute of Technology, USA

NETL Workshop on Multiphase Flow Science August 6-7 2013

Present Study

Objectives

- i. To investigate the accumulation of solid particles at the centerline for the simulation of dense particle-gas multi-phase flows using the cylindrical coordinate system
- ii. To compare the quality and computational cost of simulations using the cylindrical coordinate system with those using the Cartesian Cut-Cell approach

Conclusions

- i. Better prediction of void fraction with respect to experimental data using averaged solid and gas radial velocities at the centerline
- ii. Significantly less computational cost for simulations using the cylindrical coordinates as compared to those employing the Cartesian cut-cell approach

The Two-Fluid Model

- Solid and gas phases fully interpenetrating continua using generalized NS equations
- Computationally efficient
- Conservation equations coupled with constitutive relationships

Blend function Plastic Flow Viscous Flow

- Kinetic Theory of Granular Flow
- (KTGF)

The TFM has been implemented using **MFiX** (Multiphase Flow with Interphase eXchanges)

Validation of Numerical Model

Experimental Conditions

Column D=13.8 cm, H=1.5m

Particles Group B; $d_p=350 \mu m$, $\rho_p=2500 \text{ kg/m}^3$

Fluidizing Gas Air (ambient conditions)

Static Bed Height 20 cm

Measuring Level 14.3-18.1 cm

Time averaged (2-20s) void fraction versus bed height at different superficial velocities using cylindrical coordinates ($18 \times 160 \times 12$)

Choice of Coordinate System

- i. Cartesian 2D Only qualitative analysis
- ii. Cartesian Cut-Cell 3D Expensive!

iii. Cylindrical 3D - Accurate, Inexpensive

Simulations using the Cylindrical 3D coordinate system show a characteristic *dip* at the center

Time averaged (2-20s) void fraction at axial height 14.3-18.1 cm for different radial resolutions

Cartesian Cut-Cell

Cylindrical Coordinates

Time instant snapshot

Centerline Boundary Conditions

Radial Velocity

- No normal flow
 - => Accumulation of solid particles at center
- Required for the computation of
 - (a) Convection terms
 - (b) Gas-Solid Drag Force

x-momentum equation control volume $u_1 = u_1(u_{1/2}, u_{3/2})$

Axial Velocity

- Free slip boundary condition
- Numerically, $v_{p'} = v_{q}$ and $v_{q'} = v_{p}$
- Error (time averaged) =

$$\left|\frac{\overline{v}_{1jk} - \overline{v}_{0j|k + \frac{N_{\theta}}{2}}}{\overline{v}_{1jk}}\right| < 2\%$$

Discretization of the bed cross section for y-momentum equation

Centerline Treatment

Multi-Valued Formulation

$$u_{r,\frac{1}{2}jk} = u_{r,\frac{3}{2}jk}$$

Different centerline Cartesian velocity in each cell

Multi-Valued Averaging

$$u_{r,\frac{1}{2}jk} = \frac{u_{r,\frac{3}{2}jk} - u_{r,\frac{3}{2}jk + \frac{N_{\theta}}{2}}}{2}$$

Identical centerline Cartesian velocity in diametrically opposite cells

Single-Valued Averaging

$$u_{r,\frac{1}{2}jk} = \overline{u}_x cos\theta + \overline{u}_y sin\theta$$

Unique centerline Cartesian velocity $u_{y,k}$ in all cells

Numerical Experiment

Solid + Gas injected through a side port into a cylindrical vessel

Comparison along the distributor axis

Gas x-velocity at distributor height

Gas x-velocity for (a) Cut-Cell 3D

- (b) Cylindrical 3D (No Modification) and
- (c) Cylindrical 3D (Average) at t=0.10s

Resolution

Analysis based on the study by **Clemins (1988)**Maximum resolution based on bed, particle size

$$\frac{R}{L_m} > \overline{\alpha} \left[\frac{0.5(1-\overline{\alpha})}{|\Delta \overline{\alpha}|_{tol}} \right]^{1/2}$$
$$(n_r)^2 \times n_{theta} \times n_{axial} < constant$$

Grid resolutions tested (axial resolution = 5 mm) with modified code using Cylindrical 3D coordinate system

Domain (Cylindrical 3D)

Grid Resolution:

- Low resolution at center for continuum (~ 4.8 mm)
- Sufficient resolution at wall to capture wall effects (~ 3 mm)

Solution:

 n_{theta} I2 Δy 5 mm Δr 3.8 mm (Uniform Grid) 3.0 - 4.8 mm (Non Uniform Grid)

First order accurate

but time averaged void fraction shows good match (max error < 5%)

Time-averaged (2-20s) void fraction at axial height 14.3-18.3 cm

Comparison with Cut-Cell – Bubbling Bed

Time averaged (2-20s) plots of (a) Void Fraction and (b) Solid axial velocity at axial height 14.3 – 18.1 cm

A pproach	Domain	Real Time (s)	CPU Time (hr)
Cylindrical	$18 \times 120 \times 12$	20	188
Cut-Cell	$36 \times 120 \times 36$	20	1116

Simulating bubbling beds using the cylindrical coordinates

- (a) shows better match with experimental data at the center as well as bed interior and
- (b) costs more than 5 times less as compared to the Cartesian Cut-Cell approach

Comparison with Cut-Cell – Slugging Bed

Time averaged (2-20s) plots of (a) Void Fraction and (b) Solid axial velocity at axial height 14.3 – 18.1 cm

A pproach	Domain	Real Time (s)	CPU Time (hr)
Cylindrical	$18 \times 160 \times 12$	20	309
Cut-Cell	$36 \times 160 \times 36$	20	1442

Simulating slugging beds using the cylindrical coordinates

- (a) shows better match with experimental data at the center as well as the interiors and
- (b) costs 5 times less as compared to the Cartesian Cut-Cell approach

Conclusions and Future Work

- i. Single-valued averaging scheme has been used to predict the centerline gas and solid radial velocities to prevent local accumulation of solids
- ii. Non-uniform grid employed using cylindrical coordinates; predicted timeaveraged void fraction more accurate as compared to that with Cut-Cell approach
- iii. Significantly **less computational cost** for simulations using the cylindrical coordinates as compared to those employing the Cartesian cut-cell approach
- iv. Upper limit on grid resolution based on bed geometry and particle size
- v. Free slip boundary condition at the centerline can be used to good approximation

Future Work

- i. Independent experimental data to validate code modification
- ii. In-depth analysis of the continuum limit at the centerline
- iii. Investigation of mixing and segregation in 3D Cylindrical beds

References

Clemiņš, A. "Representation of Two-phase Flows by Volume Averaging." *International Journal of Multiphase Flow* 14.1 (1988): 81–90. Web. 1 Feb. 1988.

Fukagata, K., and N. Kasagi. "Highly energy-conservative finite difference method for the cylindrical coordinate system." *Journal of Computational Physics* 181.2 (2002): 478–498.

Makkawi, Yassir T., Phillip C. Wright, and Raffaella Ocone. "The Effect of Friction and Inter-particle Cohesive Forces on the Hydrodynamics of Gas—solid Flow: A Comparative Analysis of Theoretical Predictions and Experiments." Fluidization and Fluid Particle Systems Papers. 163.1–2 (2006): 69–79.

Xie, Nan, Francine Battaglia, and Sreekanth Pannala. "Effects of Using Two-Versus Three-dimensional Computational Modeling of Fluidized Beds: Part I, Hydrodynamics." *Powder Technology* 182.1 (2008): I–13.Web. 2 Feb. 2013.