
Institute of Process Engineering, Chinese Academy of Sciences 

Beijing, China.   Email: nyang@home.ipe.ac.cn 

2013-08-06 

Ning Yang, Jinghai Li 
 

6th NETL 2013 Workshop on Multiphase Flow Science, Morgantown 

 
Stability-Constrained Multi-Fluid CFD Models for 

Multiphase Systems 



Complexity: Multiscale structure formation and evolution  

 Macro-scale: different flow regimes and regime transition 
 Meso/Micro-scales: liquid vortices, bubble wakes, bubble swarms, bubble  

deformation, bubble breakup/coalescence 

Chen et al., AIChE J., 1994  Lin et al., AIChE J., 1996  

Harteveld., 2005  Ruthiya et al., AIChE J., 2005  



State of The Art: CFD simulation 

• Model-dominated  
• Force models: drag, virtual mass, lift, turbulent dispersion force, etc. 
• Turbulence models: different choice for single-phase turbulence, bubble-induced  

turbulence, dispersed or mixture model for two-phase turbulence, turbulence 
coupling 

• Discretization schemes for convection term 
• Grid resolution 
• Boundary condition 
• fails to work for higher gas flow rate (Transition & heterogeneous regime) 
• NOT able to predict the regime transition  

See Monahan et al., AIChE J., 2005 



Requirements: CFD simulation 

• Capture the dominant structures among the multi-scales 

 not only the macro-scale phase distribution 

• Cover all the regimes 

 not only a single specific regime 

• Predict the structure evolution (regime transition) 

 not only the evolution within each regime 



Challenging problems 

Macro-scale:  regime transition, why ? 

? 

Meso/Micro-scales: how to describe the gas-liquid interaction ? 

How can we incorporate the meso/micro effects into CFD simulation without the need to 
reconstruct the missing structure using DNS? 

? 



The EMMS model: Originally proposed for gas-solid fluidization 

EMMS 
model 

6 conservative 
equations Dilute  

phase 

Gas velocity         Uc 
Solid velocity       Upc 
Voidage                 ec 
Volume fraction   f 
Cluster diameter dcl 

Gas velocity        Uf 
Solid velocity      Upf 
Voidage                ef 

8 Variables 

 Dense 
 phase 

Energy-minimization multi-scale 

Cluster-scale 

Particle-scale: 
  in dense-phase 
 
  In dilute-phase 

Energy Resolution 

Structure Resolution 

(Li & Kwauk, 1989) 

Operating  
Conditions 

Compromise 
between dominant 

mechanisms 

      Stability Condition: 
   Wst = min|ε= min          Nst =min 

Correlation 
between scales 



The hierarchy in the EMMS model  

Force balance equation for the dense phase 

Force balance equation for the dilute phase 

Force balance of interphase 
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Continuity of fluid 

Continuity of solid 

(1): Mass and force balances 

(2): Correlation of meso-scale structure and 
meso-scale energy dissipation 

Cluster diameter 
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(3): Stability condition 

Yang, Progress in CFD, 2012; Chen et al., Chinese J Chem. Eng., 2012 
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Regime transition (choking)：The role of different constraints 

A curved surface：solutions 
of mass and force balances 

A curve：due to the correlation of 
meso-scale structure and meso-scale 

energy dissipation 

Two points：final solution 
subject to the stability condition 

Yang, Progress in CFD, 2012; Chen et al., Chinese J Chem. Eng., 2012 
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Experimental

Simulation

Output solid flux (kg/m2s)
Empirical correlations+CFD

Time (s)

Output particle flux 

Simulation 

Experiments 

Two-Fluid Model  

(Wen-Yu/Ergun drag laws) 
Two-Fluid Model  

(EMMS drag model) 

Yang et al., Ind. Eng. Chem. Res., 2004, 43, 5548-5561.  Yang et al., Chem. Eng. J,, 2003 
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Simulation Experiments 

Gas-Solid: Application of EMMS drag in CFD simulation of a CFB riser 



The system can be  self-adapted due to cluster formation!  

Weinstein et al., Fluidization IV, 1983, 299-306;                       
Li et al., Chem. Eng. Sci., 1998, 3367-3379 

Axial distribution of solid concentration in a CFB riser 

Yang et al., Ind. Eng. Chem. Res., 2004, 43, 5548-5561; 
Yang et al., CFB VIII, 2005, 291-298. 

Two Fluid Model (TFM) 
Homogeneous   
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H
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m
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 I=20 kg 
 I=15 kg 

Voidage 

TFM+EMMS 
Dense bottom, dilute top 

Experiment: 
Dense bottom, dilute top 

Ug=1.52m/s, Gs=14.3Kg/m2s 



Extension to Gas-liquid system 

  DBS 
model 

Operating  
Conditions 

Compromise 
between dominant 

mechanisms 

Correlation 
between scales 

3 conservation 
equations  Large 

 bubbles 

Gas velocity       Ug,S 
Volume fraction   fS 
Bubble diameter dS 

6 Variables 

 Small 
 bubbles 

Dual-bubble-size model (DBS) 

Large bubble 

Small bubble 

Gas velocity       Ug,L 
Volume fraction   fL 
Bubble diameter dL 

      Stability Condition:  
surf,S+L turb min.N N+ →

Liquid 

Structure Resolution 

Energy Resolution 

(Yang et al, Chem. Eng. Sci, 2007) 
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Gas 

Liquid 

turbN
surfN

TN

Interface 
oscillation 

Viscous  
dissipation 

breakNInterface fracture 

Path of energy transfer and dissipation   (Zhao, 2006; Ge et al, CES,2007) 



f

gU

Gas-liquid 
bubbly flow 

Energy dissipated directly on micro-
scale caused by relative motion 
between bubbles and liquid 

Energy consumption due to 
meso-scale structure evolution 

Scale-dependent energy resolution 

+surf turbN N

breakN

totalN
min 

max 

(Zhao, PhD thesis, 2006; Ge et al, Chem. Eng. Sci.,2007) 



Relationship of momentum transfer and energy dissipation  

(Yang et al, Chem. Eng. Sci., 2010, 2011) 



A new mechanism beyond transport equations 

Large bubbles 

Small bubbles 

Liquid 

Transport equations： 
Mass and momentum conservative 
equations (6 structure parameters), 
not closed! 

Structure 
resolution 

+surf turbN N min breakN max 

Stability condition 

+ 

Micro-scale dissipation A buffer for 
energy 

dissipation 
Sustain the formation 

and evolution of 
mesoscale structure 

dissipated directly by 
relative motion of 
bubbles and liquid 

Meso-scale dissipation 

Energy 
resolution 



Model assumption 

 (viscous dissipation ) Nturb≈ ε  ( turbulent dissipation ) 

• Nbreak           Ncoalescence  (No net surface generated) 

• Classical statistical theory of isotropic turbulence 

 

 
•  

b
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(Luo & Svendsen, AIChE J., 1996) 



Mathematical model (DBS): 

2
g,L2L l

L l DL L l3
L L b

1
6 4 2 1

Uf Uf g C d
d f f

πρ ρ
π

 
= ⋅ ⋅ − ⋅ − 

g,S g,L gU U U+ =

 Variables:      (fS, fL, dS, dL, UgS, UgL) 

surf,S+L turb min.N N+ →

Small bubble: 

 Equations: 

Large bubble: 

Continuity: 

Stability condition: 
subject to 

the 6D space of                
structure parameter  
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Regime transition: why? 

Camarasa et al., 1999, Chem. Eng. Proc., 38, 329-344; 
Ruthiya et al., 2005, AIChE Journal, 1951-1965 

Yang, et al., Chem. Eng. Sci., 2010, 65, 517-526; 
Chen, et al., IECR, 2009, 48, 290-301 
 

SBS≈DBS SBS≈DBS SBS≠DBS 

Jump change of total gas hold-up  

Jump change of global minimum of 
micro-scale energy dissipation within 
the space of structure parameters  

Ug=0.128m/s 

Ug=0.129m/s 



Stability-constrained multi-fluid approach (SCMF) 

DBS Model: 

• Mass balance  

• Force balance 

• Closure (stability condition) 

Two-fluid models: 

• Mass conservation 

• Momentum conservation 

• Closure (Empirical) 

vs. 

Stability-constrained multi-fluid approach (SCMF) 

• Mass conservation for two or multiple fluids 

• Momentum conservation for two or multiple fluids 

• Closure (stability condition) 
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Cd/db for gas and liquid 
phaseSCMF-A

Cd/db for dilute and dense 
phase

Structure parameters 
for dense phase

SCMF-B
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SCMF-A 
Mass conservations: 

Momentum conservations: 

Assumption: 
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l l
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t
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SCMF-B 
Mass conservations: 

Momentum conservations: 

Assumption: 
 
 
   MS_L=ML_S=0 
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l S
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Simulation case: 
Hills (1974) 

Simulation case: 
Camarasa et al. (1999) 

•Height: 2m;  ID: 0.1m 

•Initial liquid height: 1.35 m 

• Perforated plate: 61 holes  

• hole diameter: 1mm 

• Number of meshes: 3.34 million 

• k-ε mixture model  

•First order upwind 

• Time averaged data for H=1m 

•Height: 1.3m;  ID: 0.138m 

•Initial liquid height: 0.9 m 

• Perforated plate: 61 holes  

• hole diameter: 2mm(0.4mm) 

• Number of meshes: 5.31 million 

• k-ε mixture model  

•First order upwind 

• Time averaged data for H=0.6m 



SCMF-A vs. other drag models (Cd0, p, db) 

2

2

422.5 5335 21640.5 , 0.128
/

139.3 795 1500.3 , 0.128

g g g
D b

g g g

U U U
C d

U U U

 − + ≤= 
− + >

0.687
D0

16 48 8max{min[ (1 0.15Re ), ], }
Re Re 3 4

EoC
Eo

= +
+

D0
24 60.44
Re 1 Re

C = + +
+

D D0(1 ) p
gC C ε= −

Tomiyama (1998)  

White (1974)  

DBS model (this work)  

Effective drag coefficient: 

Standard drag coefficient 

SCMF-A 

Correlations 
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Effect of correction factor on simulation CD0: Tomiyama;  db=5mm; p: 0, 2, 4 

D D0(1 ) p
gC C ε= −

Ug=0.095m/s 



Effect of correction factor on simulation CD0: White;  db=5mm; p: 0, 2, 4 

Ug=0.095m/s 

D D0(1 ) p
gC C ε= −
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Simulation with the SCMF-A model (Gas holdup) 

Ug=0.038m/s 

Ug=0.095m/s 

Ug=0.127m/s 



30 Ug=0.038m/s Ug=0.095m/s Ug=0.127m/s 

Simulation with the SCMF-A model 
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
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SCMF-B vs. other drag models: 

Schiller-Naumann 

Ishii-Zuber 

( ) ( )1.5
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SCMF-B 
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Comparison between different models: Total gas holdup 

Bubble column (Hills, 1974) Bubble column (Camarasa, 1999) 

• Ishii-Zuber model over-estimates the total gas holdup at higher Ug 

• Schiller-Naumann model under-predicts the total gas holdup at lower Ug 
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Simulation with the SCMF-B model (Total gas holdup) 

The SCMF-B model can reproduce the plateau or shoulder of the gas holdup curve 

Bubble column (Hills, 1974) Bubble column (Camarasa, 1999) 
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Comparison between SCMF-A, B and other models (Hills column) 

Ug=3.8 cm/s Ug=9.5 cm/s Ug=12.7 cm/s 

Radial profile of gas holdup 

Ug=3.8 cm/s Ug=9.5 cm/s Ug=12.7 cm/s 

Radial profile of liquid axial velocity 
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Comparison between SCMF-A, B and other models (Camarasa column) 

Radial profile of gas holdup Radial profile of liquid axial velocity 
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SCMF-B 

Ug=0.038m/s Ug=0.095m/s Ug=0.127m/s 
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Evolution from SCMF-A to SCMF-B 

SCMF-A model
1. Conservative equations for gas and liquid;
2. Inlet flow rate Ug ;
3. Drag coefficient (CD/db)T extracted from DBS model.

Step 1
1. Conservative equations for two “fluids”;
2. Inlet flow rate Ug;
3. Drag coefficient (CD/db)T extracted from DBS model.

Step 2
1. Conservative equations for two “fluids”;
2. Inlet flow rate Ug,L;
3. Drag coefficient (CD/db)T extracted from DBS model.

SCMF-B model
1. Conservative equations for two “fluids”;
2. Inlet flow rate Ug,L;
3. Drag coefficient (CD/db)L extracted from DBS model.



 Regime transition 
can be physically understood via the jump change of the minimum point of micro-scale 
energy dissipation in the 3D space of structure parameters. 

 Stability condition 
supply a new constraint for gas-liquid complex flow in addition to mass and momentum 
conservative equations 

Conclusions and Prospects 

 Stability-constrained multi-fluid CFD approach 

• may offer a closure for CFD and may be of significance to the fundamental of multiphase 
flow. 

• are superior to traditional TFMs with empirical drag correlations: 
 Without the need to adjust correction factors 
 Suitable for low, intermediate and higher gas flow rates 
 Can capture the plateau or shoulder of the gas holdup curve 

• Each SCMF model has its strength and weakness by comparison.  
 SCMF-A is better for lower and much higher flow rates.   
 SCMF-B is better for prediction of overall gas holdup / at relatively higher gas flow rate / 
 the wall region for lower gas velocity. 
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Thank you for your attention 
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