

6th NETL 2013 Workshop on Multiphase Flow Science, Morgantown

Stability-Constrained Multi-Fluid CFD Models for Multiphase Systems

Ning Yang, Jinghai Li

Institute of Process Engineering, Chinese Academy of Sciences Beijing, China. Email: nyang@home.ipe.ac.cn

2013-08-06

Complexity: *Multiscale structure formation and evolution*

Macro-scale: different flow regimes and regime transition

 Meso/Micro-scales: liquid vortices, bubble wakes, bubble swarms, bubble deformation, bubble breakup/coalescence

State of The Art: CFD simulation

- Model-dominated
- Force models: drag, virtual mass, lift, turbulent dispersion force, etc.
- Turbulence models: different choice for single-phase turbulence, bubble-induced turbulence, dispersed or mixture model for two-phase turbulence, turbulence coupling
- Discretization schemes for convection term
- Grid resolution
- Boundary condition
- fails to work for higher gas flow rate (Transition & heterogeneous regime)
- NOT able to predict the regime transition

See Monahan et al., AIChE J., 2005

Requirements: CFD simulation

- Capture the dominant structures among the multi-scales not only the macro-scale phase distribution
- Cover all the regimes

not only a single specific regime

• Predict the structure evolution (regime transition) not only the evolution within each regime

Challenging problems

Macro-scale: regime transition, why ?

Meso/Micro-scales: how to describe the gas-liquid interaction ?

?

How can we incorporate the meso/micro effects into CFD simulation without the need to reconstruct the missing structure using DNS?

The EMMS model: Originally proposed for gas-solid fluidization

(*Li & Kwauk, 1989*)

The hierarchy in the EMMS model

(1): Mass and force balances

Force balance equation for the dense phase

$$
\frac{3}{4}C_{\text{Dc}}\frac{\rho_{\text{g}}U_{\text{sc}}^2}{d_{\text{p}}} = \frac{1-\varepsilon}{1-\varepsilon_{\text{c}}}(\rho_{\text{p}}-\rho_{\text{g}})g
$$

Force balance equation for the dilute phase

$$
\frac{3}{4}C_{\text{Df}}\frac{\rho_{\text{g}}U_{\text{sf}}^2}{d_{\text{p}}} = (\rho_{\text{p}} - \rho_{\text{g}})g
$$

Force balance of interphase

$$
\frac{3}{4}C_{\text{Di}}\frac{\rho_{\text{g}}U_{\text{si}}^2}{d_{\text{cl}}} = (\varepsilon - \varepsilon_{\text{c}})\left(\rho_{\text{p}} - \rho_{\text{g}}\right)g
$$

Continuity of solid

 $U_p = fU_{pc} + (1 - f)U_{pf}$

Continuity of fluid

 $U_g = fU_g + (1 - f)U_f$

(2): Correlation of meso-scale structure and meso-scale energy dissipation

Cluster diameter
\n
$$
d_{\text{el}} = \frac{(\rho_{\text{p}} - \rho_{\text{g}}) g U_{\text{p}} / \rho_{\text{p}} (1 - \varepsilon_{\text{max}}) - N_{\text{st,mf}}} N_{\text{st}} - N_{\text{st,mf}}} d_{\text{p}}
$$
\n(3): Stability condition
\n
$$
N_{\text{st}} = \left[U_{\text{g}} - \frac{\varepsilon_{\text{f}} - \varepsilon}{1 - \varepsilon} f (1 - f) U_{\text{f}} \right] \frac{(\rho_{\text{p}} - \rho_{\text{g}}) g}{\rho_{\text{p}}} = \min
$$

Yang, Progress in CFD, 2012; Chen et al., Chinese J Chem. Eng., 2012

Regime transition (choking):**The role of different constraints**

Yang, Progress in CFD, 2012; Chen et al., Chinese J Chem. Eng., 2012

Gas-Solid: Application of EMMS drag in CFD simulation of a CFB riser

Yang et al., Ind. Eng. Chem. Res., 2004, 43, 5548-5561. Yang et al., Chem. Eng. J,, 2003

Axial distribution of solid concentration in a CFB riser

The system can be self-adapted due to cluster formation!

Weinstein et al., Fluidization IV, 1983, 299-306; Li et al., Chem. Eng. Sci., 1998, 3367-3379

Yang et al., Ind. Eng. Chem. Res., 2004, 43, 5548-5561; Yang et al., CFB VIII, 2005, 291-298.

Extension to Gas-liquid system

(*Yang et al, Chem. Eng. Sci, 2007*)

Path of energy transfer and dissipation *(Zhao, 2006; Ge et al, CES,2007)*

Scale-dependent energy resolution

Energy dissipated directly on *microscale* **caused by relative motion between bubbles and liquid**

$$
N_{\rm surf} + N_{\rm turb} \longrightarrow \min
$$

Energy consumption due to *meso-scale* **structure evolution**

$$
N_{\text{break}} \longrightarrow \text{max}
$$

(Zhao, PhD thesis, 2006; Ge et al, Chem. Eng. Sci.,2007)

Relationship of momentum transfer and energy dissipation

(*Yang et al, Chem. Eng. Sci., 2010, 2011*)

A new mechanism beyond transport equations

Model assumption

- **(viscous dissipation)** *N***turb≈ ε****(turbulent dissipation)**
- $N_{\text{break}} \rightleftharpoons N_{\text{coalescence}}$ (No net surface generated)
- **Classical statistical theory of isotropic turbulence**

(Luo & Svendsen, AIChE J., 1996)

$$
N_{\text{break}} = \int_{\lambda_{\text{min}}}^{\lambda_b} \int_{0.5}^{0.5} \frac{\omega(d_b, \lambda)}{(1 - f_b)\rho_1 + f_b\rho_g} \cdot P_b(d_b, \lambda, f_{\text{BV}}) \cdot c_f \pi d_b^2 \sigma \cdot df_{\text{BV}} d\lambda = \varphi(\varepsilon, f_b, d_b)
$$

$$
N_{\text{surf}} = \left[1 - \frac{C_{\text{D,p}}}{C_{\text{D,b}}}\right] N_{\text{T}}
$$

Mathematical model (DBS):

Variables:
$$
(f_s, f_l, d_s, d_l, U_{gs}, U_{gl}) \implies
$$
 the 6D space of structures parameter **Equations:**

$$
\begin{array}{|l|l|}\n\hline\n\textbf{Small bubble:} & f_{\text{S}}\rho_{\text{l}}g = \frac{f_{\text{S}}}{\pi/6 \cdot d_{\text{S}}^3} \cdot C_{\text{DS}} \frac{\pi}{4} d_{\text{S}}^2 \cdot \frac{1}{2} \rho_{\text{l}} \left(\frac{U_{\text{g},\text{S}}}{f_{\text{S}}} - \frac{U_{\text{l}}}{1 - f_{\text{b}}} \right)^2 \\
\hline\n\textbf{Large bubble:} & f_{\text{L}}\rho_{\text{l}}g = \frac{f_{\text{L}}}{\pi/6 \cdot d_{\text{L}}^3} \cdot C_{\text{DL}} \frac{\pi}{4} d_{\text{L}}^2 \cdot \frac{1}{2} \rho_{\text{l}} \left(\frac{U_{\text{g},\text{L}}}{f_{\text{L}}} - \frac{U_{\text{l}}}{1 - f_{\text{b}}} \right)^2 \\
\hline\n\textbf{Continuity:} & U_{\text{g},\text{S}} + U_{\text{g},\text{L}} = U_{\text{g}} \\
\hline\n\textbf{subject to} & \textbf{Stability condition:} & N_{\text{surf},\text{S+L}} + N_{\text{turb}} \rightarrow \text{min.} \\
\hline\n\end{array}
$$

Regime transition: why?

Camarasa et al., 1999, Chem. Eng. Proc., 38, 329-344; Ruthiya et al., 2005, AIChE Journal, 1951-1965

Yang, et al., Chem. Eng. Sci., 2010, 65, 517-526; Chen, et al., IECR, 2009, 48, 290-301

Jump change of global minimum of

Stability-constrained multi-fluid approach (SCMF)

SCMF-A

Mass conservations:

$$
\frac{\partial (\varepsilon_i \rho_i)}{\partial t} + \nabla \cdot (\varepsilon_i \rho_i \vec{u}_i) = \Gamma_{liquid_s} + \Gamma_{liquid_L} = \Gamma_{liquid_gas}
$$
 (1)
$$
+ \begin{vmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{vmatrix} \vec{u}_S = \vec{u}_L = \vec{u}
$$

$$
\frac{\partial (\varepsilon_g \rho_g)}{\partial t} + \nabla \cdot (\varepsilon_g \rho_g \vec{u}_g) = \Gamma_{L_liquid} + \Gamma_{S_liquid} = \Gamma_{gas_liquid}
$$

Momentum conservations:

$$
\frac{\partial (\varepsilon_l \rho_l \vec{u}_l)}{\partial t} + \nabla \cdot (\varepsilon_l \rho_l \vec{u}_l \vec{u}_l) = -\varepsilon_l \nabla P + \mu_{l,eff} \varepsilon_l \left[\nabla \vec{u}_l + (\nabla \vec{u}_l)^T \right] + \varepsilon_l \rho_l g + \mathbf{M}_{liquid-gas} \tag{4}
$$

 $(5)+(6)$:

$$
\frac{\partial (\varepsilon_g \rho_g \vec{u}_g)}{\partial t} + \nabla \cdot (\varepsilon_g \rho_g \vec{u}_g \vec{u}_g) = -\varepsilon_g \nabla P + \mu_{g,eff} \varepsilon_g \left[\nabla \vec{u}_g + (\nabla \vec{u}_g)^T \right] + \varepsilon_g \rho_g g + M_{gas_liquid}
$$

SCMF-B

 $(4)+(5)$:

$$
\frac{\partial (\varepsilon_{dense} \rho_{dense} \vec{u}_{dense})}{\partial t} + \nabla \cdot (\varepsilon_{dense} \rho_{dense} \vec{u}_{dense}) = -(\varepsilon_{dense}) \nabla P
$$
\n
$$
+ \left\{ (\mu_{l,eff} \varepsilon_l + \mu_{S,eff} \varepsilon_s) \left[\nabla \vec{u}_s + (\nabla \vec{u}_s)^T \right] \right\} + (\varepsilon_{dense} \rho_{dense}) g + M_{dense} L
$$

$$
\frac{\partial (\varepsilon_L \rho_L \vec{u}_L)}{\partial t} + \nabla \cdot (\varepsilon_L \rho_L \vec{u}_L \vec{u}_L) = -f_L \nabla P + \mu_{L,eff} \varepsilon_L \left[\nabla \vec{u}_L + (\nabla \vec{u}_L)^T \right] + \varepsilon_L \rho_L g + \mathbf{M}_{L_dense}
$$
(6)

Simulation case: Hills (1974)

- •Height: 1.3m; ID: 0.138m
- •Initial liquid height: 0.9 m
- Perforated plate: 61 holes
- hole diameter: 2mm(0.4mm)
- Number of meshes: 5.31 million
- *k-ε* mixture model
- •First order upwind
- Time averaged data for H=0.6m

Simulation case: Camarasa et al. (1999)

- •Height: 2m; ID: 0.1m
	- •Initial liquid height: 1.35 m
	- Perforated plate: 61 holes
	- hole diameter: 1mm
	- Number of meshes: 3.34 million
	- *k-ε* mixture model
	- •First order upwind
- Time averaged data for H=1m

SCMF-A vs. other drag models (C_{dQ} **, p,** d_b **)**

Effective drag coefficient:
$$
C_D = C_{D0} (1 - \varepsilon_g)^p
$$
 Correlations
\nStandard drag coefficient
\n
$$
C_{D0} = \max\{\min[\frac{16}{Re}(1 + 0.15Re^{0.687}), \frac{48}{Re}], \frac{8}{3} \frac{E_o}{E_o + 4}\}\
$$
 Tomiyama (1998)
\n
$$
C_{D0} = 0.44 + \frac{24}{Re} + \frac{6}{1 + \sqrt{Re}}
$$
 White (1974)

SCMF-A

$$
C_D/d_b = \begin{cases} 422.5 - 5335U_g + 21640.5U_g^2, & U_g \le 0.128 \\ 139.3 - 795U_g + 1500.3U_g^2, & U_g > 0.128 \end{cases}
$$
DBS model (this work)

Effect of correction factor on simulation C_{D0} : Tomiyama; db=5mm; p: 0, 2, 4

 $C_{\rm D} = C_{\rm D0} (1 - \varepsilon_g)^p$

Ug=0.095m/s

Effect of correction factor on simulation C_{D0} : White; db=5mm; p: 0, 2, 4

$$
C_{\rm D} = C_{\rm D0} (1 - \varepsilon_g)^p
$$

Simulation with the SCMF-A model (Gas holdup)

29

Simulation with the SCMF-A model

SCMF-B vs. other drag models:

$$
C_{D0} = \begin{cases} \frac{24}{\text{Re}} \left(1 + 0.15 \,\text{Re}^{0.687} \right) & \text{Re} \le 1000 \\ 0.44 & \text{Re} > 1000 \end{cases}
$$

\n
$$
C_{D} = C_{D0} (1 - \varepsilon_{g})^{p} \qquad p = 0
$$

\n
$$
C_{D} = \begin{cases} \frac{24}{\text{Re}} \left(1 + 0.1 \,\text{Re}^{0.75} \right), & \text{viscous regime} \\ \frac{2}{\text{Re}} \left(1 + 0.1 \,\text{Re}^{0.75} \right), & \text{viscous regime} \end{cases}
$$

\n
$$
C_{D} = \begin{cases} \frac{2}{3} d_{b} \sqrt{\frac{g \Delta \rho}{\sigma}} \left\{ \frac{1 + 17.67 \left[f \left(\varepsilon_{g} \right) \right]^{6/2}}{18.67 f \left(\varepsilon_{g} \right)} \right\}, & \text{distorted regime} \\ \frac{8}{3} (1 - \varepsilon_{g})^{2}, & \text{churn turbulent flow regime} \end{cases}
$$

\n
$$
C_{D} = C_{D0} (1 - \varepsilon_{g})^{p} \qquad f \left(\varepsilon_{g} \right) = \left(1 - \varepsilon_{g} \right)^{1.5}
$$

\n
$$
C_{D} = C_{D0} (1 - \varepsilon_{g})^{p} \qquad f \left(\varepsilon_{g} \right) = \left(1 - \varepsilon_{g} \right)^{1.5}
$$

\n
$$
C_{D} = C_{D0} (1 - \varepsilon_{g})^{p} \qquad f \left(\varepsilon_{g} \right) = \left(1 - \varepsilon_{g} \right)^{1.5}
$$

\n
$$
C_{D} = C_{D0} (1 - \varepsilon_{g})^{p} \qquad f \left(\varepsilon_{g} \right) = \left(1 - \varepsilon_{g} \right)^{1.5}
$$

\n
$$
C_{D} = C_{D0} (1 - \varepsilon_{g})^{p} \qquad f \left(\varepsilon_{g} \right) = \left(1 - \varepsilon_{g} \right)^{1
$$

Comparison between different models: Total gas holdup

Bubble column (Hills, 1974) Bubble column (Camarasa, 1999)

- Ishii-Zuber model over-estimates the total gas holdup at higher Ug
- Schiller-Naumann model under-predicts the total gas holdup at lower Ug

Simulation with the SCMF-B model (Total gas holdup)

Bubble column (Hills, 1974) Bubble column (Camarasa, 1999)

The SCMF-B model can reproduce the plateau or shoulder of the gas holdup curve

Comparison between SCMF-A, B and other models (Hills column)

Radial profile of gas holdup

Radial profile of liquid axial velocity

Comparison between SCMF-A, B and other models (Camarasa column)

 0.4 Experimental values [Camarasa et al., 1999] $Ug=3.72$ cm/s $-O-1$: SCMF-A 2 : SCMF-B 0.3 $\leftarrow \Delta - 3$: TFM (with Schiller-Naumann) ∇ 4: TFM (with Ishii-Zuber) Gas holdup 0.2 0.1 0.9 $Ug=6.06$ cm/s 0.3 Gas holdup 0 0.1 0.0 $Ug=8.4$ cm/s 0.4 0.3 Gas holdup 0.2 0.1 0.0 -1.0 -0.5 0.0 0.5 1.0 r/R

Radial profile of gas holdup Radial profile of liquid axial velocity

SCMF-B

Evolution from SCMF-A to SCMF-B

 1.0

 $U_{\mathcal{Q}}=3.8$ cm/s

 $Ug=9.5$ cm/s

 $Ug=12.7$ cm/s

Step 2

SCMF-B

SCMF-B

Step 1

Step 1

 0.8

 0.6

Conclusions and Prospects

Stability condition

supply a new constraint for gas-liquid complex flow in addition to mass and momentum conservative equations

Regime transition

can be physically understood via the jump change of the minimum point of micro-scale energy dissipation in the 3D space of structure parameters.

Stability-constrained multi-fluid CFD approach

• **are superior to traditional TFMs with empirical drag correlations:**

Without the need to adjust correction factors Suitable for low, intermediate and higher gas flow rates Can capture the plateau or shoulder of the gas holdup curve

• **Each SCMF model has its strength and weakness by comparison.**

SCMF-A is better for lower and much higher flow rates. SCMF-B is better for prediction of overall gas holdup / at relatively higher gas flow rate / the wall region for lower gas velocity.

• **may offer a closure for CFD and may be of significance to the fundamental of multiphase flow.**

Recent publication

1. Yang, N* (2012) A multi-scale framework for CFD modeling of multi-phase complex systems based on the EMMS approach. *Progress in Computational Fluid Dynamics*, 12(2-3), 220-229.

2. Yang, N*, Wu, Z., Chen, J, Wang, Y., Li, J (2011) Multi-scale analysis of gas-liquid interaction and CFD simulation of gas-liquid flow in bubble columns. *Chemical Engineering Science*, 66(14), 3212-3222.

3. Yang, N*, Chen, J., Ge, W., Li, J. (2010). A conceptual model for analysing the stability condition and regime transition in bubble columns. *Chemical Engineering Science*. 65, 517-526, 2010.

4. Xiao, Q., Yang, N.*, Li, J., (2013). Stability-constrained multi-fluid CFD models for gas-liquid flow in bubble columns. *Chemical Engineering Science*. 100, 279-292.

5. Shu, S., Yang, N.*, (2013). Direct numerical simulation of bubble dynamics using phase-field model and lattice Boltzmann method. *Industrial and Engineering Chemistry Research*. DOI: 10.1021/ie303486y

Thank you for your attention