==
Cquc ® @ Delivering Breakthrough Solutions

Towards GPU Accelerated Parallel
Solvers for Multi-Phase Flows with
Adaptive Cartesian Mesh

Vladimir Kolobov and Robert Arslanbekov
CFD Research Corporation, Huntsville, AL, USA

NETL Workshop on Multiphase Flow Science
September 6-7, 2013

CFD Research Corporation www.cfdrc.com
215 Wynn Drive * Huntsville, Alabama 35805 -« Tel: (256) 726-4800 + FAX: (256) 726-4806 -+ info@cfdrc.com

Motivation

« Serial computing has reached its zenith in performance. In
the foreseeable future, parallelism will be the key ingredient
for increasing performance.

* Most applications benefit from powerful combination of a
massively parallel GPU and a fast multicore CPU.

 GPU Architectures: Fermi->Kepler->Maxwell
« Heterogeneous Multi-Core CPU-GPU clusters for HPC

« GPUs are very effective at exploiting parallelism in regular,
data-parallel algorithms (arrays & matrices operations)

* Irregular algorithms arise from complex data structures such
as trees and graphs —they are more difficult to parallelize
(structured vs unstructured)

e Successful Irregular Computations on GPU

GrD3C - 2

Delivering Breakthrough Solutions

Unified Flow Solver

Boltzmann
Equanon

Domain
Decomposition

Coupling
Algorithm

Continuum (NS)
Schemes

Direct Numerical
Solution (DNS)

s

A

DNS + AMPS

(Adaptive Mesh in

Phase Space)

1

.

(

.

Module (DSMC)

\

Lagrangian Particle

Direct Numerical Solution of
the Boltzmann kinetic
equation and Particle

(DSMC) solvers for coupled

atomistic (kinetic) and fluid

(hydrodynamic) models with

AMAR capabilities

GFS two-phase VoF solver
with tree-based AMR

 Self-Aware Physics and Adaptive Numerics

« Dynamic adaptation of computational (Cartesian)
mesh to solution and geometry

* Automatic switching between kinetic and fluid models
based on continuum breakdown criteria

« Efficient parallel execution (SFC & FoT) on a NASA
CPU-GPU cluster with 1000 nodes.

GrD3C -

Delivering Breakthrough Solutions

Particulate Modules in GFS and UFS

Rocket Exhaust Plume Continuum-Rarefied Gas
Eulerian Phase)

Fine Dust Lagrangian Particle Phase

Crater
(Eulerian Phase)

o B B e e e e e

Lagrangian tracking of large
particles within the Eulerian-
Eulerian gas-dust flow with AMR to
flow gradients and to particle
density

«GFS was originally designed for
simulations of multi-phase flows using
VoF method.

« A particulate module was added later
for tracking finite-volume solid particles
in the Eulerian fluid flow.

* The nearest-neighbor search approach
has been used with great success in
DSMC simulations with adaptive
Cartesian mesh achieving extreme
parallelism and scaling

* This technique has been implemented
into the UFS debris transport analysis
tool enabling a high-fidelity Eulerian-
Lagrangian multi-phase modeling of
three component flows: the gas phase,
fine dust phase and discrete particle
phase.

GrD3C -

Delivering Breakthrough Solutions

Space Filling Curves & Forest of Trees

p— \ |
\ . |

\ |

¥ |

\ |

1
1
\ |
\\ 1
\ ‘ \
o / \ 1 — -
|) . 1

« SFC allows complete flexibility for a fine-grained domaln decomposition with hlghly
efficient dynamic load balancing (DLB) among processors.

» During sequential traversing of cells, the physical space is filled with curves in N-
order (Morton ordering), and all cells are numbered a one-dimensional array.

A weight is assigned to each cell, proportional to CPU time required for
computations in this cell. The array modified with corresponding weights, is
subdivided into sub-arrays equal to the number of processors.

» Coarse-grained domain decomposition is obtained by using multiple octrees (a

“FoT”) connected through their common boundaries. Graph partitioning algorithms
are used for domain decomposition and DLB.

/
K

|
i)

Cro3C- ;

Delivering Breakthrough Solutions

UFS-DSMC: Lagrangian Particle Transport Module

» Use a single, dynamically adapted mesh for (i) particle collision and
(1) statistics collection/visualization and particle movement

» Tree data structure allows efficient data management for AMR and
parallelization of the code

» DSMC approach requires cell sizes less than local mean free path, A,
— fine grids are necessary in dense flow regions

R.R. Arslanbekov, V. I. Kolobov, J. Burt and E. Josyula, “Direct Simulation
Monte Carlo with Octree Cartesian Mesh”, AIAA 2012-2990

N

Particle trajectory involves cells at different levels

Cro3C- 6

Delivering Breakthrough Solutions

Implementation of GPU kernels

 An all-device (GPU) approach: the entire computation is performed
on the GPU device.

« Separate kernels for particle moving, indexing, collisions and
sampling

« Each particle is followed by a separate thread until the particle hits a
face of a cell in which it is currently located. At cells faces, particles
are either reflected or moved to neighbor cells using neighbor indices.
 Particle collisions in each cell are treated by a separate thread.

« Sampling of particle locations and velocities are performed with
sampling kernels (each cell is treated by a separate thread).

GPU Kernels are implemented according to

Su C.-C., Smith M. R., Kuo F.-A., Wua J.-S., Hsieh C.-W., and Tseng K.-C., “Large-
Scale Simulations on Multiple Graphics Processing Units (GPUs) for the Direct
Simulation Monte Carlo Method,” J. Comp. Phys. Vol. 231 (2012) 7932-7958.

with modifications for unstructured Cartesian mesh

GrD3C - 7

Delivering Breakthrough Solutions

GPU-Accelerated UFS-DSMC: Demonstration

* Intel(R) Xeon(R) X5675 @ 3.07GHz CPU processor and Tesla
C2075 GPU device.

* Hypersonic Flow over a cylinder at low Knudsen number (Kn =
0.01) with Mach = 10.

« The free stream temperature was set to 200 K and the wall
temperature — to 500 K. A non-uniform grid was used with a finer
grid in the stagnation region (denser region) and a coarser grid at
the back of the cylinder (rarefied region).

 The number of cells iIs ~130K for this case. Two cases were
benchmarked with the total number of particles of ~0.5M and ~2M

Cro3C- ;

Delivering Breakthrough Solutions

UFS-DSMC: Rarefied Hypersonic Flow

» First 10,000 time steps on a uniform level 5 grid
» Between time steps 10,000 and 14,000, the grid is adapted
until Ax < MFP/2 condition is met for all cells

» There Is a large difference of 6 levels of refinement along
the cylinder surface Mach=10, Kn=0.05

Ttra_pa...
6.170e+03

5.520e+03

4.871e+03

4.222e+03

3.572e+03

2.923e+03
2.273e+03
1.624e+03
9.742e+02
3.247e+02

» Final, adapted grid has about 22,000 leaf cells and s
characterized by about 20 (free stream region) to about 2
(stagnation region) particles per cell.

CrD3C- 9

Delivering Breakthrough Solutions

GPU-Accelerated UFS-DSMC: Tests

Number of Particles 0.5M 2M
Particle Move Speedup 22 22
Particle Collision Speedup 44 36
Particle Move (CPU), % 42 53
Particle Collision, (CPU), % 35 34
Particle Move (GPU), % 64 70
Particle Collision (GPU), % 27 27
Overall Speedup 29 22

* Overall speedup factor of 22 (real CPU-only time/real GPU-CPU
time = 51136 sec/2306 sec) was achieved for the case with 2M
particles and 29 for the case with 0.5M patrticles.

* In particular, the particle movement part speeds up by a factor of 22
and the particle collision part (without the indexing part) — by a factor
of 36 for the case with 2M particles.

* Collisional part is accelerated better since no neighbor
Indexing/retrieving Is involved. Collisional kernel speedup is slightly
larger in case with 0.5M particles which is most likely due to a lower
particle-indexing overhead.

CFDRC o 10

Delivering Breakthrough Solutions

Summary for single GPU device

* GPU accelerated DSMC code (UFS-DSMC-GPU) has been
Implemented

* Implementation was carried out based on algorithms proposed in the
literature for uniform (structured) Cartesian grids and simple embedded
bodies

» These algorithms have been extended to adaptive (unstructured) octree
Cartesian grids and to solid bodies of arbitrary shape (specified either
analytically or from CAD files)

» Corresponding GPU kernels have been developed for each part of code
(particle movement, collisions, sampling)

 The code has been tested on a modern GPU device and validated
(against CPU-only results) for different problems

 For typical cases of hypersonic flows past blunt bodies in collisional
regimes (Knudsen numbers 0.01-0.05), speed up factors of 25-45 were
achieved for different parts of the code.

CFDRC o 11

Delivering Breakthrough Solutions

Multiple GPUs: MPI-CUDA Paradigm

CPU Node 1 CPLU Node 2 CPU Node 3 CPU Node 4

[} . [.
GPU GPU GPU GPU GPU GPU GPU
device

device device device device device device

GPU
device

(] '
. '
' '
[} !
. .
.)
a4 4

From Su., et al.
J. Comp. Phys.
Vol. 231 (2012)
7932

GPU GPU GPU GPU GPU GPU GPU GPU
device device device device device device device device

e V[P| ===CUDA === CPU Node

- Spatial domain decomposition using the Forrest-of-Trees (FoT) method

* MPI protocol to exchange data from memory of all MPI processors and synchronize

« CUDA is used to put the DSMC-related simulation components on GPU and for data
transfer between CPU (host) memory and the GPU (device) global memory

« CUDA API function cudaSetDevice() to assign a GPU to each individual MPI process
* For data exchange between global memory of different GPU devices we use the
CUDA API function cudaMemcpy() (red line)

» Data is transferred from host-A to host-B (blue line) using the MPI protocol with
MPI_Send() and MPI_Recv().

« cudaMemcpy() to transfer data from host-B to device-B.

CFDRC °* 12

Delivering Breakthrough Solutions

MPI in UFS-DSMC Particle Code

 MPI capability implementation using FoT
parallelization algorithms.

* Domain decomposition is based on breaking
the computational domain into boxes: each
CPU then receives a set of such boxes
depending on some partitioning algorithm (e.g.,
based on a number of cells).

 The FoT is a coarse-grain parallel algorithm
since load balancing can be done only in terms Initial grid and box ID partioning for a problem

SURT of heat transfer with 16 (root) boxes and
of the building (root) boxes. immersed solid phase

« Each CPU operates on a given number of boxes, which is useful since
computational grid is stored only on the host CPU.

» During grid adaptation and then dynamic load balancing (DLB) these boxes are
exchanged between the CPUs according to some balancing algorithm.

« Each box has it own ID number and a set of boxes on each host CPU share the
same PID (Processor ID) number.

CFDRC °* 13

Delivering Breakthrough Solutions

MPI in UFS-DSMC Particle Code

» Particles are Iinitialized in each PID P

domain. They start to move and interact MPI boundaries
e &

with each other, with domain boundaries,
and with solid surfaces/phases immersed
into the domain

« Particles (their position, velocity, atomsn soondarsohese 4

remaining move time, etc.) which hit an § ros PID=0
MPI boundary are stored in a special list A " S
- Knowing direction of box boundary face [, fataeenere o el
a particle hits (PID=9), its neighbor PID e
(e.g., PID=8) is determined

* Neighboring PIDs receive and then add particles colliding
these particles for further processing

during the next time step. Processor ID partioning for 16 CPU/GPUs, problem of heat
transfer. Particle interactions with solid surface/phases, with

other particles and with domain and MPI boundaries

« All operations are performed in terms of classes and objects

* MPI exchanges are called via special read and write methods of the objects/classes.

* Exchanges implemented by creating special classes and objects which are inherited
from the main GtsObject class (parent class)

CFDRC °* 14

Delivering Breakthrough Solutions

MPI in UFS-DSMC Particle Code: Demo

- Heat transfer between a cold cylinder (temperature T4 = 300 K) immersed into a
sealed box with hot walls (temperature of the walls T, = 600 K).

 The (initially uniform) density of gas phase particles corresponds to Knudsen
number 0.01.

* Full energy accommodation assumed for particle-wall interactions.
» 30M particles used to achieve good statistics.
« Computational grid with a layer of higher resolution grid around solid surfaces.

* Local cluster node consisting of 8 CPUs (processor Intel(R) Xeon(R) X5675 @
3.07GHz).

numdens... Ttra_pa...
1.982e+20 5.849e+02

1.881e+20 5.556e+02
1.780e+20 5.263e+02
1.679e+20 4.969e+02
1.578e+20 4.676e+02
1.477e+20 4.383e+02
1.376e+20 4.090e+02
1.276e+20 3.797e+02
1.175e+20 3.503e+02

1.074e+20 3.210e+02

Gas number density Temperature

CFDQC °* 15

Delivering Breakthrough Solutions

MPI in UFS-DSMC Particle Code: Testing

* Real time (required for 200 steps) for different number of CPUs used

« Computational time drops almost linearly (power law factor close to 0.9)
with increasing the number of CPUSs.
» AlImost ideal scaling is achieved for the implemented MPI module.

UFS-DSMC CPU Acceleration: Heat Transfer w/ 30M particles

1000 :
E UFS-DSMG @
: 225/x%®
™ :
2 ®
= ;
(@]
& °
o 100 t
£ [
= [
S P
o
10 - -
1 2 4 8

Number of CPUs

CFDQC o 16

Delivering Breakthrough Solutions

MPI-CUDA in UFS-DSMC Particle Code

* A GPU kernel is used to calculate the positions of
all particles over a time step At.

» Each particle’s deterministic motion is handled by
a CUDA thread, using data held entirely in global
memory.

* Particles determined to have left the current GPU’s
simulation domain are placed into a buffer (in the
device, and finally on the host) in preparation for
migration to other GPU devices.

* Introduce new particles based on inlet boundary
conditions.

«Send and receive from buffers of all MPI
processors (host) with the MPI API protocol
MPI_Send() and MPI_Recv().

* Reallocate particles from buffers into their newly
allocated GPU'’s global memory.

A flowchart demonstrating the
particle movement phase
algorithm in the hybrid MPI-CUDA
DSMC scheme:

' J— i

: A Allocate a huffer memory for particle
Move all particles | removal (device)

Kernel_ParticleMove<<<blockman, threadmum>>>() ’
| cudatalloc()

[m====—f=====-= | |

l

I

I

I

Remove particles moving to other | l |
) Send particles to buffer memory |
Ly |

I

I

I

I

I

subdomains (from device to host) (device)

I

| '
= = | Copy data from buffer (device) to
Enter new particles | buffer (hos()

' cudaMemepy()

Reallocate particles
(global memory)

|Send particle data from buffer (host)

to other CPU processors
MP!I Send() & MP1_Recv()

'

Copy particle data from buffer (host)|

to global memory (device)
cudaMemepy()

After Su et al. J. Comp. Phys. Vol. 231
(2012) 7932.

CFDQC o 17

Delivering Breakthrough Solutions

MPI-CUDA in UFS-DSMC Particle Code: Testing

» The MPI-CUDA algorithms was first tested and debugged on a local cluster
consisting of 2 Tesla C2075 GPU cards.

* Then, used NASA Pleiades cluster has 64 Westmere nodes each including
one NVIDIA Tesla M2090 (512x 1.3GHz cores) GPU.

« Each M2090 GPU device is connected to the CPU node via a PCI Express
bus. The nodes are connected via high-speed Infiniband.

The following modules were used to compile and run

module load gcc/4.1.2 mpi-mvapich2/1.4.1/gcc
module load cuda/4.2

Runs were carried out in “gpu” interactive queue using 1 CPU/1 GPU per
node

gqsub -I -g gpu -1 select=16:ncpus=1l:model=wes gpu -1l walltime=0:15:00

CFch o 18

Delivering Breakthrough Solutions

MPI-CUDA in UFS-DSMC Particle Code: Testing

« Same problem of heat transfer used for the CPU-only scaling tests presented
above.

* Results obtained on different number of GPUs are identical and they are analyzed
for the obtained steady-state solutions (after 40,000 time steps).

* Real time (per 2,500 time steps) as a function of the number of GPUs is shown

A very good scaling is obtained with the power law scaling factor being 0.8 (factor
of 1 means ideal scaling)

 This provides a proof of the high efficiency of the implemented hybrid MPI-CUDA

algorithms UFS-DSMC GPU Acceleration: Heat Transfer w/ 30M particles
1000 : .
UFS-DSMC @
¢ 550/x"°
'y L
o
c
8 L]
3
5 100 F e
£
= °
3 ®
o
10 1 1 1 1
1 2 4 8 16 32
Number of GPUs

CFch o 19

Delivering Breakthrough Solutions

Future Work for Lagrangian Particle Module

» Extension to 3D geometries with GPU

« Extension to dynamically adapted grids with GPU (every, say, 100" or
1000 time step, transfer all particles back to CPU, do grid adaptation and
cell re-indexing on CPU, put all particles back to GPU, do computations on
GPU, and so on)

* Dynamic Load Balancing (based on number of cells and/or number of
particles per process) with MPI and GPU. Use MPI box exchange strategies
in FOT

* (Two-way) Coupling Eulerian-Lagrangian modules via mutually induced
forces.

* Particle collisions for dense flows
« Computation of particle collisions using a

search over alocal volume.

i + Particle collisions amongst all the particles
contained in the volume defined by these
neighboring cells.

A pre-specified search level determines the

(a) Search level 1 (b) Search level 2 (c) Search level 3 number of neighboring partic|es amongst

Neighborhood size for different search levels which the collisions are enacted.

CFch o 20

Delivering Breakthrough Solutions

DoE SBIR Phase | Project

Develop a modern adaptive Eulerian-Lagrangian solver for
multiphase flows on parallel CPU-GPU clusters with dynamically
adaptive Cartesian mesh for high resolution of flow and particle
transport.

Specific objectives of Phase I:
 Develop GPU-accelerated Lagrangian particle transport including:
« GPU processing of particle motion and collisions
« Particle mapping to grid
« Interpolation of local forces from Eulerian fluid and inter-phase
momentum transfer
 Develop GPU-accelerated Eulerian solver for octree Cartesian mesh
 Improve parallelization algorithms with GPU-accelerated
construction of Space Filling Curves and Octrees
 Develop detailed plan for Phase Il implementation, testing and
validation as well as marketing and commercialization.

CFDRC o 21

Delivering Breakthrough Solutions

Acknowledgements

Financial support provided by the DoE SBIR Phase |
Project DE-SC0010148 “"GPU-Accelerated Multiphase
Eulerian-Lagrangian Solver with Adaptive Mesh
Refinement”

CFch o 22

Delivering Breakthrough Solutions

