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Introduction

0 Numerical simulations of particulate flows with heat transfer:
O Two-Phase Continuum Model
O Discrete Particle Model
O Direct Numerical Simulation (DNS)

0 Very little work has been done on particulate flows:
1 Effect of neighboring particles
O Non-spherical particles
O Clusters of particle

01 Direct Numerical Simulation (DNS) method combined with Immersed
Boundary Method (IBM) to study convection heat transfer of
particulate flow
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Description of the Method

]
1 Combines DNS and IBM

0 Two types of grids are used to solve
the solid interactions:

O Eulerian grid : Flow domain

O Lagrangian grid :Particles
boundaries

0 Solid boundary is represented by a
virtual boundary with a distribution
force

O Non-slip condition

O Constant temperature
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Continuity, Momentum, and
Energy Equation

Description of the Method
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Fluid velocity and pressure fields

O Discretization NS equation

Particle-fluid interaction

O Immersed boundary method

Particle-Particle interaction

O Soft-sphere model

Particle dynamics

O Newton’s equation of motion
® Translational

m Rotational



Assumptions
N

0 Boussinesq approximation on the effect of
temperature on fluid properties

0 Particle has uniform temperature (Bi=0)
0 No-slip at the particle surface

0 Equal temperatures at the particle surface



Research Goals
B

0 Study heat transfer rate in the presence of
neighboring particles

1 Heat transfer of spheres in a packed bed

2 Nusselt number as a function of solid fraction

0 Heat transfer rate mixed convection

0 Effect of incident angle

0 Heat transfer rate of non-spherical particles



Heat Transfer in Packed Beds
N

0 Gunn’s correlations
Nu, = (7-10¢, +5¢7)(1+0.7Re;? Pri®) + (1.33—2.4¢, +1.2¢) Re," Pri”°
O Porosity range of 0.35-1.0 and Re < 10°

0 Improvement: Accounting particle shape through
numerical simulations



Some Preliminary Results
B

0 Heat transfer rate in the presence of neighboring
particles:

O Two horizontal spheres
O Two vertical spheres

o Clusters

0 Heat transfer rate of mixed convection
0 Effect of the incident flow

0 Fluidization of particles in a narrow channel
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Heat transfer rate in the presence
of neighboring particles



Natural Convection Two
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Natural Convection for Clusters

(Pr=0.72, Gr=100)

Average overall Nusselt Number
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Heat transfer rate of mixed
convection



Mixed Convection ( Re=100, Ri=5)

0 Aiding Flow (0° — 90°)

0 Opposing Flow (20° — 180°)



Mixed Convection ( Re=100)
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Fluidization of Particles in
Narrow Channel



Fluidization of Particles in Narrow

Channel
N

0 Number of particles:

1200

0 Diameter of particle :
Temperature
0.3cm ]

o Dimension of channel: tms
20x60x1cm 05

o Fluid density: 1.0 g/cm3 fos

0

0 Particle density:1.5

g/cm3
0 Gr=100,Pr=0.72




Fluidization of Particles in Narrow

Channel-Velocit
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Fluidization of Particles in Narrow
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Summary

0 A DNS combined with IBM is used to solve three-
dimensional thermal interaction between particles
and fluid. A heat transfer scheme, similar to the
momentum force scheme, was developed to
determine the temperature field.

0 The presence of neighboring particles affects the
average Nusselt number. Depending on the
separation of the particles, the Nusselt number can
increase or decrease.
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Summary
N

0 The incident angle is an important factor in a mixed
convection process.

O Incident Angles between 0° — 90°: Nusselt number
decreases if the angle increases

O Incident Angles between 90° — 180°: Nusselt number
decreases if the angle increases



Future Work

0 Derive correlation of particle Nusselt number as a
function of solid fraction

0 Study heat transfer rate of non-spherical particles
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