

High Resolution Electrical Capacitance Volume Tomography with Applications to Multi-Phase Flow Systems

¹Qussai Marashdeh, ²Aining Wang, and ²L.-S. Fan

¹Tech4Imaging LLC ²The Ohio state University

Introduction

- Electrical Capacitance Volume Tomography (ECVT) is a 3D imaging technique for Multi-phase flow imaging.
- ECVT is among few know non-invasive imaging tools that can be used for commercial applications (low cost, suitable for scale-up, fast, and safe)
- Higher ECVT resolution is required for wider adoption of the technology.
- Adaptive ECVT is a new innovative advancement that responds to the higher resolution requirements and more.

Complete ECVT System

CT Scanned ECVT

Ping pong balls in a bed of 185um glass beads.

Courtesy of DOE NETL

High Resolution Through Increased Number of Plates

SNR

& Parameters

Two Sensors Under Investigation: 12 & 24 Channels

24 channel Sensor

Iso-surface of Sensitivity Matrix

12 Channels

Y-Z plane 3-D effect

24 Channels

X-Z plane

Sensitivity Matrix Along X-Direction

Sensitivity Matrix Along Z-Direction

Experiment with Single Object

$$V_{ob} = \frac{m}{M} * V$$

$$V = \frac{1}{4}\pi D^2 H = \frac{1}{4}\pi \times 4.5^2 \times 8 = 127.2 \ inch^3$$

14.14 inch³

Sensor	12-channel	24-channel	real object
Volume ()	13.56	14.40	14.14
Error (%)	-4.1%	1.8%	

12 channel Sensor

24 channel Sensor

Two Sphere Experiment

Irregular Shape Experiment

24 channel Sensor

Gas-Solid Experiment

Gas-Liquid Experiment

Example: Trickle Bed Pulsing Flow

Liquid: water

Gas: air

Particles: 2 mm diameter glass beads

Flow Regime Map

Flow map for air/water system with 2mm glass beads

From Guray Tosun's paper

Videos For Pulsing Flow

(G: $0.454 \text{ kg/m}^2\text{s}$, L:21.7 kg/m²s)

Original video in normal speed

ECVT reconstructed video in normal speed (50fps)

Slow motion (0.1X of original speed, 5fps)

(G: $0.454 \text{ kg/m}^2\text{s}$, L:21.7 kg/m²s)

Observations:

1.

The pulse & interval lengths are not the same, not in a stable status.

2.

Pulse: Liquid rich region

with some gas

Interval: Liquid scarce region

with lot of gas

Pulse Shape

Under mild flow rates, the pulse is basically symmetric along the length of the column.

Snap shot of a mild pulse (G: 0.252 kg/m²s, L:24.8 kg/m²s)

Requirements For Higher Resolution

- Increased number of plates
- High SNR of measuring electronics
- Well-posed reconstruction problem
- Well-conditioned reconstruction problem
- Advanced reconstruction algorithms

A Breakthrough Toward Higher Resolution: Adaptive Electrical Capacitance Volume Tomography

- Virtually infinite number of independent capacitance measurements
- High SNR for accurate measurements
- Zooming!
- Beaming!
- Controlled Resolution!

Adaptive and conventional plates in 2D depiction

Adaptive Plate: Each segment is activated With different levels of amplitude and phase

Voltage distributions: Conventional and Adaptive, case 1

Voltage distribution on conventional plate

Voltage distribution on adaptive plate

US Patent Application #: US 13/644,973

Voltage distributions: Conventional

and Adaptive, Case 2

A: Conventional Sensor Weak Sensitivity zone 0.15 Normalized Sensitivity Sensitivity Value **High Sensitivity** -0.05 (Focus) zones 6 8 10 12 14 Layer Number Along Vertical Dimension **B:** Adaptive Sensor x 10⁻³ Normalized Sensitivity Weak Sensitivity zone -2

10

Layer Number Along Vertical Dimension

12

16

18

US Patent Application #: US 13/644,973

Example for higher resolution

Conclusion

- Higher ECVT resolution is directly proportional to increased number of plates
- Adaptive ECVT is a new technology at the frontier of higher resolution capacitance imaging:
 - Infinite options of plate arrangements and independent number of measurements
 - Maintain High SNR of acquired measurements
 - Ability to beam ECVT resolution toward a desired region
 - Ability to Zoom ECVT resolution toward a desired region