Gas-Liquid Flows Involving Multicomponent Fuel Evaporating Spray

O. Samimi Abianeh, C. P. Chen S. Mahalingam

Dept. of Chemical & Materials Engineering

Morgantown WV August 7, 2013

Introduction

Liquid Spray devices are widely used in many industrial processes.

Paint Spray

Simulated Ink Jet

Melted Metal Spray

Polymer solution Spray

- For the combustion system, the combustion efficiency and behavior are dependent on the effectiveness of the liquid fuel breaking up into droplets.
 - Finer drop size would enhance performance,
 - A rapid mixing and combustion due to generating fine propellant drops may cause the injector overheating.

2

Presentation Outline

- > Introduction
- **▶** New Atomization and Evaporation Models
 - T-Blob/T-TAB, Two-temperature evaporation model
 - A Hybrid Model
 Primary breakup (T-Blob)/Secondary breakup (T-TAB)
- ➤ Multi-component Droplet Heat/Mass Transfer
- > Concluding Remarks

Stages of Liquid Jet Atomization

Primary jet breakup:

A disintegration process of the liquid jet is subject to cohesive and disruptive forces acting on the jet

Secondary drop breakup:

Liquid drops continue breaking into smaller drop sizes as they when traveling downstream

- In atomization.... "surprising findings.....long accepted theories of primary breakup were NOT effective", Faeth et. al (1994)
- "....Sauter Mean Diameter vs. Stream-wise distance could be correlated using surface tension and liquid turbulence alone..."

Classical Kevin-Helmholtz (KH) Model: Primary Atomization

- Derived based on the linear surface wave stability analysis of a liquid jet.
- ➤ The fastest wave growth rate and corresponding wave length responsible for the jet breakup.
- ➤ Liquid jet in a form of "blob" parcels containing liquid spherical drops with their size equal to the injection orifice diameter.

Fastest Wave Growth Rate
$$\rightarrow \Omega \left[\frac{\rho_1 a^3}{\sigma} \right]^{0.5} = \frac{\left(0.34 + 0.38 We_g^{1.5}\right)}{\left(1 + Z\right)\left(1 + 1.4 T^{0.6}\right)}$$

Corresponding Wave length
$$\rightarrow \frac{\Lambda}{a} = 9.02 \frac{(1+0.45Z^{0.5})(1+0.4T^{0.7})}{(1+0.87We_g^{1.67})^{0.6}}$$

Rate of Parent Drop
$$\rightarrow \frac{da}{dt} = -\left[\frac{a}{\tau} - C_a \frac{L_w}{\tau_w}\right]$$

$$\tau = 3.726B_1 a / \Lambda \Omega \qquad C_a = \frac{B_0}{3.726B_1}$$

Liquid jet represented by "blob" parcels

Z : Ohnesorge number

T : Taylor parameter

 $We \ : \ Weber \, number \big(\rho_{_g} U^2 r_{_p} / \sigma \big)$

Re: Reynolds number

T-Blob Primary Breakup Model

- Include surface wave phenomenon and turbulence behavior on the primary breakup
- Breakup process described by characteristic length and time scales of individual physical phenomena
- Motion due to a larger kinetic energy having a stronger influence in the liquid jet breakup
- > Account for the initial turbulence of the liquid jet as well as the effects of the injector design

Rate of Parent Drop Size Change
$$\frac{da}{dt} = -\left[\frac{a}{\tau} - C_a \left(\frac{L_w}{\tau_w} - \frac{L_t}{\tau_t}\right)\right]$$

Turbulent time scale: $\tau_t = \tau_0 + 0.0828t$

Turbulent length scale:
$$L_t = L_t^0 \left(1 + \frac{0.0828t}{\tau_t^0}\right)^{0.457}$$

The initial turbulence and injector geometry represented by

$$\tau_t^{\rm o}$$
 and $L_t^{\rm o}$

Estimation of Initial Turbulence Quantities

Total Pressure drop across the injection nozzle

s: Nozzle contraction area ratio

Kc: Loss coefficient due to nozzle inlet geometry

Cd: Discharge coefficient

The T-Blob/T-TAB Model

Trinh, Huu P., Chen, C. P. and Balasubramanyan, M. S., J. Engineering for Gas Turbines and Power, Vol. 129, pp. 920-928, 2007.

Extension to Evaporating Spray

- "..years of studies show that evaporation *CANNOT* be simplified by rapid-mixing (uniform temperature)... or purely diffusion...." Amsden et al. (2003)
- Fully resolution using Differential Equations within each droplet is CPU expensive

- •The T-Blob/T-TAB model can supply phenomenological "structure"
- •Current approach based on 'film theory' and Two-Temperature formulation
- •Mass & heat transfer, takes place inside a thin film surrounding the droplet core
- •Film (boundary layer) thickness estimated from the T-Blob/T-TAB

Turbulent Finite Conductivity Model (Cont.)

- > Temporal change of the droplet temperature $\frac{dT_d}{dt} = \frac{h_1(T_s T_d)A_d}{\rho_1 C_{P_1} V_d}$
- ► HTC formulated through turbulence characteristics supplied from the T-blob model
- The HTC inside droplet determined from the ratio, $h_1 = -\frac{1}{\delta}$
- > δ_e , an equivalent thermal boundary layer film thickness, $\delta_e = \sqrt{\pi \alpha_{eff} t}$

$$lpha_{ ext{eff}} = lpha_{ ext{lam}} + lpha_{ ext{turb}}$$
 $lpha_{ ext{lam}} = rac{k_l}{
ho_l C_{P,l}} \qquad lpha_{ ext{turb}} = rac{C_{\mu}}{P r_{ ext{turb}}} rac{k_l^2}{arepsilon_l}$

The liquid droplet turbulence quantities k_l and ε_l are obtained from the T-blob spray model

Variation of the T_s and T_d (one-way results)

- ➤ Study variation of T_S and T_d for the turbulent F-C model
- \rightarrow U_d 102 m/s
- Ambient environment quiescent nitrogen at 600 K

Mass Transfer Formulation

Conservation of species "i" across the droplet surface requires:

$$\dot{m}_{i} = \dot{m}Y_{i}^{l,s} + J_{i}^{l,s}(Y_{i}^{l} - Y_{i}^{l,s}) = \dot{m}Y_{i}^{g,s} + J_{i}^{g,s}(Y_{i}^{g,s} - Y_{i}^{\infty})$$

The mass transfer rate between the surface and inside of the droplet is modeled by:

$$J_i^{l,s} =
ho^l \frac{D_{ ext{eff}}}{\delta_{ ext{diffusion}}}$$

where:

$$D_{eff} = D^l + D^t$$

$$D^{t} = C_{\mu} \frac{(\kappa^{t})^{2}}{\varepsilon^{t} S c^{t}}$$

$$\delta_{ extit{diffusion}} = \sqrt{\pi D_{ extit{eff}} t}$$

Vapor-Liquid phase Equilibrium

At high pressure, The vapor-liquid equilibrium at the droplet surface is expressed by the equality of chemical potential of each species in the liquid and vapor phases, and can be written as:

$$X_i^{g,s}\phi_i^{g,s}=X_i^{L,s}\phi_i^{L,s}$$

Where
$$\ln \phi_i = \frac{b_i}{b}(Z-1) - \ln(Z-B) + \frac{A}{2\sqrt{2}B}(\frac{b_i}{b} - \delta_i) \ln(\frac{Z+2.414B}{Z-0.414B})$$

And compressibility factor:

$$Z^{3} - (1-B)Z^{2} + (A-3B^{2}-2B)Z - (A \times B - B^{2} - B^{3}) = 0$$

Partial molar enthalpy:

$$h_i - h_i^0 = -RT^2 \frac{\partial}{\partial T} (\ln \phi_i)$$

Diesel Cases - Fuel Surrogate Model

The diesel fuel surrogate mixture:

Matching Distillation Curve

toluene (0.22), decane (0.14), dodecane (0.15), tetradecane (0.23), hexadecane (0.13) octadecane (0.13)

Jet (vapor) penetration at different times

Sandia Lab Spray A Experimental Data - Validations

Fuel Vapour mass fraction and Droplet fuel component distributions

Summaries

- > Sub-grid Phenomenological models, providing useful predictions for practical engineering applications having similar flow conditions
- > Development, implementation and validation of T-Blob/T-TAB model
- A phenomenological model was formulated to account for finite heat/mass transfer and liquid turbulence within droplet for multi-component fuels.
- > Due to low diffusivities, transient behavior is present during the entire droplet lifetime.
- Two-Way coupled CFD (KIVA-3V, rel. 2) results for diesel evaporating spray show good predictive capability.

Thank You

Acknowledgements

Drs. Huu P. Trinh and M. S. (Han) Balasubramanyam

Mr. Omid Samimi Abianeh

NASA-MSFC/PRC and BP for financial support CFD Research Corp. for CFD-ACE+ Los Alamos National Lab for KIVA-3V rel.2

Refs:

- 1. Omid Samimi Abianeh, C. P. Chen, and Ramon Cerro, "Batch Distillation: The forward and inverse problems; Surrogate fuel development," *Ind. Eng. Chem. Res.*, Vol. 51, 12435-12488, **2012**.
- 2. Samimi Abianeh, O., Chen, C. P., 2011, "Discrete multi component evaporation model of gasoline-ethanol blended fuel with liquid turbulence effects", *Int J. Heat Mass Transfer*, Vol. 55, 6897-6907, **2012**.
- 3. Samimi Abianeh, O., Chen, C. P., and Cerro, R. 2011, "Mass conservation and mass transfer from a finite source to infinite media," submitted to AIChE J.
- 4. Samimi Abianeh, O., Chen, C. P., 2011, "Turbulent Multi-component Fuel Droplet Evaporation", 2011 World Congress on Engineering and Technology (CET), Shanghai, China, paper 22329, Oct. 28-31, 2011.
- 5. Balasubramanyan, M. S. and Chen, C. P. "Modeling Liquid Jet Breakup in High Speed Cross-Flow with Finite Conductivity Evaporation," *Int. J. Heat and Mass Transfer*, vol. 51, 3896-3906, **2008**.
- 6. Trinh, Huu P., Chen, C. P. and Balasubramanyan, M. S., "Numerical Simulation of Liquid Jet Atomization Including Turbulence Effects," *J. Engineering for Gas Turbines and Power*, Vol..129, pp. 920-928, **2007**.
- 7. Balasubramanyan, M. S., Chen, C. P. and Trinh, H. P., "A New Two-Temperature Model for Evaporating Atomization and Spray," *J. Heat Transfer*, Vol. 129, pp. 1082-1086, **2007**.
- 8. Trinh, H. P., and Chen, C. P., "Modeling of Turbulence Effects on Liquid Jet Atomization & Breakup", Atomization and Spray, Vol. 16, pp. 907-932, 2006.

Backup Charts

Sandia Lab Spray A Experimental Data - Validations

Injector dimensions at Sandia National Laboratory experiments (Engine combustion network exp. data archive., 2012).

Injector Type	Bosch common-rail, 2 nd generation
Nozzle	Single-hole, KS1.5/86, mini-sac
Nozzle hole exit diameter, D _{exit}	90 μm
Nozzle length	1.0 <i>mm</i>
KS factor (D _{inlet} -D _{exit})/10 μm	1.5
Max discharge coefficient	0.86
Injection pressure	1500 bar
Injection duration	1.5 ms
Total mass injected	3.5 mg

Operating conditions at Sandia National Laboratory experiments, (Engine Combustion Network exp. data archive., 2012).

Ambient gas temperature	900 K
Ambient gas pressure	Near 6 MPa (Simulation: 5.8 MPa)
Ambient gas density	22.8 kg/m^3
Ambient gas velocity	Near-quiescent, less than 1 m/s

Summaries -II

- A phenomenological model was formulated to account for **finite heat/mass transfer** and **liquid turbulence** within droplet for multi-component fuels.
- Due to low diffusivities, **transient behavior** is present during the entire droplet lifetime.
- The surface mass fraction of the light component is high during the early period of the heat-up /evaporation (swelling possible); light component trapped within droplet may cause micro-explosion
- By increasing turbulent Schmidt/Prandtl number, the rate of mass transfer/Heat transfer will be decreased inside of the droplet.; has the capability for tuning liquid turbulent Schmidt number for each component to get varied vapor mass fraction history at gas side.
- Two-Way coupled CFD (KIVA-3V) results for diesel evaporating spray show good predictive capability