

Validation of filtered two-fluid models for gasparticle flows in bubbling fluidized beds

Shailesh Ozarkar, Xiaokang Yan, Shuyan Wang, Chris Milioli, Fernando Milioli, Sankaran Sundaresan

Filtered Two-Fluid Models validation studies

- Circulating Fluidized Bed (CFB) Challenge Problem
- Bubbling Fluidized Bed (BFB) Challenge Problem
 - Shuyan Wang, Xiaokang Yan, Chris Milioli, Fernando Milioli,
 Sankaran Sundaresan Princeton University
 - Shailesh Ozarkar ANSYS

Bubbling Fluidized Bed (BFB) challenge problem

> Gas and Particle properties

Gas: Air at 25 °C

Particles:

- -- FCC Catalyst Particles
- -- 3% or 12 % fines content $(d_{32} = 78E-06 \text{ or } 68E-06 \text{ m})$

Experiments conducted at four different flow conditions

	Fines Content, % Less	Superficial Gas Velocity		
Case	Than 44 micron	Static Bed Height	at Bed Bottom	Air Distributor
	% < 44 micron	Hstatic, ft (m)	Ug, ft/s (m/s)	Туре
1	3	12 (3.66)	1 (0.3)	Pipe Manifold
2	3	4 (1.22)	1 (0.3)	Pipe Manifold
3	3	8 (2.44)	2 (0.6)	Ring Sparger
4	12	8 (2.44)	2 (0.6)	Ring Sparger

Initially Case 3 considered for validation of filtered models.
Subsequently all other cases were also studied.

Experimental Measurements

- Axial profiles of Pressure
- Differential Pressure (DP) fluctuations across entire bed and 24 inch section
 - -- Mean and Std. Dev.
- Radial profile of bubble void fraction

> Case 3 : Axial Pressure gradient profile

- Missing data
 - Total inventory of particles not provided.
 - Only initial static bed height data available but not the voidage of static bed. We estimated inventory and revised it slightly later.

Filtered Two-Fluid Models

- Simulations were based on filtered two-fluid model with constitutive models for filtered drag and particle phase stress.
 - Y. Igci, S. Sundaresan, "Constitutive models for filtered two-fluid models of fluidized gas-particle flows," Ind. Eng. Chem. Res., **50**, 13190–13201 (2011).
- Some simulations were augmented with wall correction
 - Y. Igci, S. Sundaresan, "Verification of filtered two-fluid models for gas-particle flows in risers," AIChE J., **57**, 2691-2707 (2011)
- Further refined sub-filter scale models recently proposed by Milioli et al. were also tested.
- C. Milioli et al., "Filtered two-fluid models of gas-particle flows: New constitutive relations," AICHE J., doi: 10.1002/aic.14130 (2013).

Grid and Initial Conditions

- Hybrid grid (tets, hex and prisms) generated on BFB geometry without cyclones
- To avoid excessively fine grid near air distributor, each orifice size is taken as twice its actual size
- Grid resolutions examined:
 - 20000 cells grid
 - 40000
 - 75000
 - 198000
- All cases initialized with initial static bed height and 0.4 void fraction

Hybrid grid on truncated BFB geometry

Kinetic Theory based TFM and Igci et al. filtered TFM

Animations: Contours of volume fraction of particles

Kinetic Theory based TFM Intermediate grid (40000)

Igci et al. filtered model Intermediate grid (40000)

- Unphysical bed expansion is observed with both models even with refined grids.
- No improvement with
 - Wall corrections with Igci et al. filtered TFM
 - Solids recirculating boundary condition to maintain inventory.

Milioli et al. filtered TFM

Animation: Contours of volume fraction of particles

Estimated Inventory

Fluid Static Pressure

- Lower fluid static pressure values in simulations
 - -- Solids inventory experimental data is missing.
 - -- It appears that specified solids mass in simulation is lower than experiment.
 - -- Estimated difference is about 2407Pa or 160 Kg.

Milioli et al. filtered TFM

Revised Inventory

Fluid Static Pressure

Axial Pressure Gradient

Total wall clock time to simulate 1 sec of flow time on 8 compute nodes

Total wall-clock	20000	40000	75000
time (min)	9	210	322

➤ Unphysical bed expansion in 20000 cells grid case. Predicted bed expansion with intermediate and refined grids compared well with experiment.

Milioli et al. filtered TFM, Intermediate grid (40000)

Time-averaged results

Volume fraction of particles

5.00e-01 4.93e-01 4.87e-01 4.80e-01 3.5 4.73e-01 3 2.5 2 m 4.67e-01 4.60e-01

Axial velocity of particles

BFB Case 3

Milioli et al. filtered TFM

Differential Pressure (DP) across entire bed and 24 inch section

■ Experiment data ■ Intermediate grid (40000) ■ Refined grid (75000)

BFB Case 4

12% fines content (d₃₂ = 68 E-06 m)

Case attributes

- Moderate bed height (2.44 m)
- Air distributor:Ring sparger

Orifice diameter is taken as twice the actual size.

BFB Case 1 and Case 2

3% fines content

Case attributes

• Case 1: Deep bed (3.66 m)

Case 2: Shallow bed (1.22 m)

Air distributor: Pipe manifold

Orifice diameter is taken as twice the actual size.

Euler-Lagrange approach with DEM to account parcel collisions

Preliminary results

➤ Unphysical bed expansion with Wen & Yu drag model. Bed expansion is relatively less pronounced with Igci et al. filtered drag model while it appears reasonable with Milioli et al. filtered drag model.

Euler-Lagrange approach with DEM to account parcel collisions

Preliminary results

➤ Use of effective filtered drag for Euler-Euler (EE) framework in Euler-Lagrange (EL) approach is a reasonable first approximation.

Summary

- Kinetic theory based TFM and Igci et al. filtered TFM yielded unphysical bed expansion.
- Further refined filtered TFM by Milioli et al. is more promising.
 - Bed expansion and mean of differential pressure captured reasonably well.
 - Under prediction of Std. Dev. Of differential pressure.
 - Need further investigation
 - -- Refinement of stress model ??
 - -- Defluidization ??
- ➤ Results from EL approach with effective filtered drag developed for EE framework are encouraging.

Extra slides....

17

Case 3 DDPM-DEM simulation

In all three DDPM-DEM simulations (Wen & Yu, Igci and Milioli)

- Grid resolution:
 - 40000
- > Total number of parcels: 830,000
- Particle diameter is kept constant (78.66 micron, same as in TFM study)
- Number of particles per parcel: 6E+06
- ➤ Recirculating boundary condition on particles to maintain inventory if in case particles leave from outlet.

See next slide for specified DEM parameters

Case 3 DDPM-DEM simulation

> DEM parameters

- Coefficient of normal restitution 0.9

- Friction coefficient 0.2

- Contact time (tc) ~ 5e-3 s

(based on parcel mass)

- Particle time step ($dt_p = tc/5$) ~1e-3 s