Numerical Simulations Studying Size Segregation in a Rotating Drum

Mohit P. Tandon, Aditya Karnik, Simon Lo Cd-adapco

Motivation

Investigate the effect on granular flow of a distribution of particle sizes inside the bed thereby, investigate how well theories and correlations developed for mono-dispersed perform for more complex poly-disperse systems

Granular Flows

- **Particulate materials exist in many industries including** metallurgical, chemical, food, pharmaceuticals, ceramic
- It is sometimes preferable to separate components from mixture whereas, sometimes mixing produces the final product
- Rotary drum is often used as granular mixer, gas/solid reactor, dryer

- **Focus on rolling regime which is common for mixing** purposes
- Granular bed in rolling mode can divided into two distinct regions:
	- \blacktriangleright Thin active layer
	- \blacktriangleright **Larger passive layer**

Source: Alizadeh et al.,AIChE J., 59(6), 2013

Radioactive tracing was used to collect data in plexi-glass drum

Composition of poly-disperse systems was chosen to ensure rapid segregation

- $\begin{array}{c} \hline \end{array}$ **Particle density,** $\rho_s = 2500kg/m^3$
- $\begin{array}{c} \hline \end{array}$ **Gas density,** $\rho_{g} = 1.18 kg/m^{3}$
- \blacktriangleright **Gas viscosity,** $\mu_{g} = 1.8 \times 10^{-5} Pa.s$
- Ь ▶ Drum diameter, $D = 24$ *cm*
- \blacktriangleright ▶ Drum Length, L=36cm
- \blacktriangleright Bed height, 35 % *of volume*

Model setup in STAR -CCM+

- \blacktriangleright Algebraic model for granular temperature
- $\begin{array}{c} \hline \end{array}$ Fluid particle drag modelled using Gidaspow drag
- \blacktriangleright \blacktriangleright $\;$ Inter-particle drag modelled using Gera-Syamlal drag
- \blacktriangleright Particle kinetic viscosity modelled using Gidaspow model
- \blacktriangleright Frictional regime modelled using Schaeffer model
- \blacktriangleright \blacktriangleright Coefficient of restitution, e = 0.9
- \blacktriangleright Maximum particle volume fraction set at 0.624

Governing Equations

▶ Continuity

$$
\frac{\partial}{\partial t} \alpha_k \rho_k + \nabla \bullet \alpha_k \rho_k u_k = 0
$$

Fluid Momentum

$$
\frac{\partial}{\partial t} \alpha_k \rho_k u_k + \nabla \bullet \alpha_k \rho_k u_k u_k = -\alpha_k \nabla p + \alpha_k \rho_k g + \nabla \bullet \alpha_k \tau_k + F_I
$$

▶ Solid Momentum

$$
\frac{\partial}{\partial t}\alpha_s \rho_s u_s + \nabla \bullet \alpha_s \rho_s u_s u_s = -\alpha_s \nabla p - \nabla p_s + \alpha_s \rho_s g + \nabla \bullet \alpha_s \tau_s + F_I
$$

Granular Temperature formulation

 π

s

d

 \blacktriangleright Granular temperature is calculated by an algebraic relation derived by assuming local equilibrium between production and dissipation of fluctuating energy.

$$
\sqrt{\theta} = \begin{cases}\n-\frac{K_1 \varepsilon_s D_{ii} + \sqrt{K_1^2 D_{ii}^2 \varepsilon_s^2 + 4K_4 \varepsilon_s \left[K_2 D_{ii}^2 + 2K_3 D_{ij} D_{ij}\right]}}{2\varepsilon_s K_4}\n\end{cases}
$$
\n
$$
K_1 = 2\rho_s g_0 (1 + e)
$$
\n
$$
K_2 = \frac{4d_s \rho_s \varepsilon_s g_0 (1 + e)}{3\sqrt{\pi}} - \frac{2}{3} K_3
$$
\n
$$
K_3 = \frac{\rho_s d_s}{2} \left\{ \frac{\sqrt{\pi}}{3(3 - e)} [0.5(3e + 1) + 0.4(1 + e)(3e - 1)\varepsilon_s g_0] + \frac{8\varepsilon_s g_0 (1 + e)}{5\sqrt{\pi}} \right\}
$$
\nParticle diameter

\n
$$
K_4 = \frac{12(1 - e^2)\rho_s g_0}{1/\sqrt{\rho_s}} \qquad \qquad \text{Particle density} \qquad \rho_s
$$

Particle density
$$
\rho_s
$$

\nStrain rate tensor D_{ij}

Kinetic theory stress tensor

$$
S_{s} = \left[-P_{s} + \left(\xi_{s} - \frac{2}{3} \mu_{s} \right) \nabla \cdot u_{s} \right] I
$$

\n**Solid pressure,**
\n
$$
P_{s} = \rho_{s} \varepsilon_{s} \theta + P_{s}^{C}
$$

\n**Collisional solid pressure,**
\n
$$
P_{s}^{C} = 2\rho_{s} \varepsilon_{s}^{2} \theta_{g_{0}} (1 + e) \qquad \text{(Lun et al.)}
$$

\n**Particle shear viscosity,**
\n
$$
\mu_{s} = \frac{4}{5} \varepsilon_{s}^{2} \rho_{s} d_{s} g_{0} (1 + e) \sqrt{\frac{\theta}{\pi}} + \mu_{s}^{K}
$$

\n**Particle kinetic viscosity,**
\n
$$
\mu_{s}^{K} = \frac{10\rho_{s} d_{s} \sqrt{\pi \theta}}{96(1 + e)g_{0}} \left[1 + \frac{4}{5} (1 + e)g_{0} \varepsilon_{s} \right]^{2} \qquad \text{(Gidaspow et al.)}
$$

\n**Particle bulk viscosity,**
\n
$$
\mu_{s} = \frac{4}{3} \varepsilon_{s}^{2} \rho_{s} d_{s} g_{0} (1 + e) \sqrt{\frac{\theta}{\pi}} \qquad \text{(Lun et al.)}
$$

Solid pressure,

 \blacktriangleright 11

Frictional stress tensor – Schaeffer

$$
S_{s}^{f} = \left[-P_{s}^{f} + \left(\xi_{s}^{f} - \frac{2}{3} \mu_{s}^{f} \right) \nabla \cdot u_{s} \right] I
$$

\nFrictional Solid pressure,
\n
$$
P_{s}^{f} = 10^{25} (\varepsilon_{s} - \varepsilon_{s}^{\max})^{10} \qquad \varepsilon_{s} > \varepsilon_{s}^{\max}
$$
\n
$$
= 0 \qquad \varepsilon_{s} \leq \varepsilon_{s}^{\max}
$$
\nFrictional viscosity,
\n
$$
\mu_{s}^{f} = \min \left(\frac{P_{s}^{f} \sin \phi}{\sqrt{4 I_{2D}}}, \mu_{s,\max}^{f} \right) \qquad \varepsilon_{s} > \varepsilon_{s}^{\max}
$$
\n
$$
= 0 \qquad \varepsilon_{s} \leq \varepsilon_{s}^{\max}
$$

$$
I_{2D} = \frac{1}{6} \Big[(D_{s,11} - D_{s,22})^2 + (D_{s,22} - D_{s,33})^2 + (D_{s,33} - D_{s,11})^2 \Big] + D_{s,12}^2 + D_{s,23}^2 + D_{s,31}^2
$$

Particle bulk viscosity, $\xi_s^f = 0$

Velocity vectors in transverse plane of drum for MD2

Velocity vectors in transverse plane of drum for PD2

Velocity vectors in transverse plane of drum for MD2

Stream wise velocity profile in transverse plane of drum along $x = 0$

Results – Active layer thickness

Results – PD1

Results – PD2

Conclusions

- Qualitative trends in velocity profiles and void fraction distribution are captured
- Active layer thickness predicted reasonably well except for MD1
- Small difference between velocity profiles of polydispersed and mono-dispersed cases
- Small particles exist in core (3 mm), larger particles (5 and 6 mm) surround them while ones with 4 mm are spread across whole volume

