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Hybrid TFM-DEM

Coal Beneficiation Fluidised Bed
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Coal Beneficiation Fluidized Bed
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• Process for separating lighter coal from 
denser gangue particles

• Magnetite bed material 
ρ = 4200 kg/m3 φ=200µm

• Fluidized with air @ 25°C 
• Coal ρ = 1400-2700 kg/m3 φ=1.3-6.7m

Qinggong Wang et al. (2015) Chem. Eng J. 260, 240-257



Numerical Approaches for Gas-Particle Systems
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Segregation behaviour with coal diameter
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Coal particle φ3 mm Coal particle φ4.3 mm Coal particle φ6.7 mm

Qinggong Wang et al. (2015) Chem. Eng J. 260, 240-257

Air velocity 0.1 m/s = 1.5 Umf | Bed of 200µm magnetite particles: ρ = 4200 kg/m3



Predicted and Measured
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Effect of fluidizing velocity
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Fluidised Bed Coker

Coase Grain Modelling
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1/19th Scale Syncrude Coker Geometry & BCs

UBC Pressurised Cold Coker Model

Cyclone 
dip-legs

HCTL

Stripper

Reactor

Freeboard

Top 
Space

Gas outlet 
to cyclones

Sore 
Thumb

Stand pipe

Shed 
Row 7

Lower 
Stripping 
Nozzles

Upper 
Stripping 
Nozzles

Spargers under 
Sheds 1 & 2

From Song et al. (2004) Powder Tech. 147, 126-136

CFD Model Coker Geometry
CFD Model Stripper Geometry

Peter Witt  | NETL Workshop, 9-10 August 2016 10 |

1009mm

φ483mm

φ305mm



Nozzle treatment - Resolved

• Six levels of feed nozzles
• Total of 92 feed nozzles
• 5.5mm square section

• 20 attrition nozzle 
• 3mm square section

• Mesh not good resolution of 
nozzle exit
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Nozzle treatment – Sources

Feed 1
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• Nozzles not resolved 
• Mass and momentum added 

using source terms
• Merry jet penetration used to 

calculate source location

• Jet length taken as 58% of 
Merry length

• Based on Li (2009) GLAB 
report

• Distributed along length of jet
mass : 15%, 15%, 70%
mom : 40%, 50%, 10%
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Stage 2 – Coarse Grain Model - Drag
• Coarse grain model of Igci-Sundaresan.
• Corrections to drag, solids viscosity and solid pressure 

to account for sub-grid clustering effects

h() is a complex function of volume fraction
Frfilter is Froude number based on filter length

Where βmicro is the micro-scale drag term, Gidaspow model used 
here.

Igci, Pannala, Benyahia & Sundaresan (2012)
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Results –
Drag Models
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• Voidage – Good 
agreement mostly.

• Upper section over 
predicted

• Velocity over 
predicted in top and 
centre

• Up and down flow 
boundary reasonable
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Solid Tracers 
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Tracer × Solid Volume FractionSolid Volume Fraction
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Tracer Residence Times
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Solid Tracer 
Addition

Solid Tracer Gas Tracer



Feed Nozzle Model
• 2D axi-symmetric
• 2 / 3 Phase

steam / bitumen
steam / bitumen / coke

• Phase inversion bubble to 
drops

• Number density model for 
bubble/drop diameter

• Based on work from UBC 
Pougatch etal.
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Steam

Bitumen



Feed Nozzle Model
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Comparison to Measurements
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Feed Nozzle into a Fluidized Bed
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• 2D model not really adequate 
• 3D transient model needed
• Sources for momentum, gas 

and liquid deposition could be 
determined

• Sources used in full coker
model to improve results



Thickener Modelling
Two phase slurry flow with 
Population Balance
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AMIRA P266 Improved Thickener Technology 

• Multi sponsor project over 20 yrs
• 21 Industrial Customers
• Over $750mil NPV savings
• Multiphase slurry flow

• CFD & UVP measurements
• Flocculation Expt. & Population 

balance, CFD
• Slurry unified rheology:

• Hindered settling
• Sedimentation
• Yield stress

• Raking
• Control
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• Continuous gravity settling tank
• High solid underflow, clear overflow
• Feedwell dissipates feed momentum + mixing chamber to flocculate particles to increase settling 

rate.
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Solid-liquid separation in thickener/clarifier
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Turbulent flocculant/particle 
mixing
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(turbulent shear)
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(turbulent collision)
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→
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Flocculation Process
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Combined population balance & CFD model
Mean aggregate size
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 Full PB size distribution in each cell

 ~100,000-500,000 nodes 

 Coded as Fortran subroutine in 
CFX-4, CFX-5 & OpenFOAM
 Fully coupled to flow solution (viscosity, 

settling velocity, shear)
 Allows feedwell optimisation (geometry, 

flocculant addition point, dilution)
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Nguyen, Heath, Witt, (2006), 5th Int. Conf. CFD in the Minerals and Process Industries



CFD simulation:

• very similar flow structures

• velocity profiles agree well
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CFD prediction.
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Feedwell Design Improvements
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Closed feedwell – current design CSIRO Novel feedwell

27 |

Main features:
• New concept: separate zones for momentum dissipation and flocculation
• Ability to cope with wide range of feed variations
• Simple design and easy to manufacture and retrofit



Potential for Control …
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Develop surrogate models to cover
the window of operating conditions

Interrogate surrogates as part 
of thickener control on the basis
of monitored feed properties

• CFD is not being used for control.
• Interrogation of surrogates is simple/rapid.
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Example 1-to-1 CFD (Sunrise Dam)
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• Install half-shelf and remove existing baffles.
• Add flocculant through two specific sparges locations.

Recommendation:

• Paste thickener treating gold tailings that are then pumped to a 
central tailings discharge area.

• Low underflow density 55 wt%, low yield stress (7-12 Pa).
• Severely shear thinning; zero beach angle limits storage capacity.

Problem:

• CFD model used to determine factors limiting flocculation efficiency 
within the full-scale feedwell.

Approach:

After:
• Underflow density increased to 60-66 wt%, gave beach angle 2°.
• Eliminated need to duplicate Tailings Storage Facility (saved $20 m).
• Increased water recovery, reduced flocculant dosage, reduced 

cyanide to tailings (saved >$0.15 m pa).

Images and outcomes courtesy of AngloGold Ashanti



Aluminium Electrolysis Process

Multi-phase & Multi-physics 
Modelling
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• 15g Coke can requires 0.9kWh elec. 
40W globe 23hrs or 11 laptop 
batteries @ 0.08kWh

• Aluminium metal refined from 
alumina.

• Operates at ≈960°C.
• Very high electric currents and 

magnetic fields. 
• Lorentz, Marangoni & electro-

chemical effects

Reduction of Alumina to Al Metal
Aluminium Electrolysis Process
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Al2O3 powder   Al2O3  

Cryolite melt (bath) 
(960°C)

CO2 (g)

Current
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Carbon 
anode

Al (l)

Cathode

Cryolite melt 
(960°C)

Carbon 
anode

Al (

Cathode

Cell 1 Cell 2                         

The schematic diagram of one cell



Multi-physics in Al Reduction Cells
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Distribution
Electric Field 
Distribution

Thermal Field

Temperature
Distribution Ledge Profile
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Al2O3 dissolution and diffusion; Al
dissolution and diffusion; bath-metal
interface variation; ledge profile; sludge
et.al

Erosion

Heat 
Transfer Aim to：

Save energy;
Increase current 
efficiency;
Optimize cell’s 
operation and 
design;
Develop new cells



Multi-scale, Multi-physics Simulation Environment
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Prep

Proc

MHD flow Bubble flow Bath flow

Bath flow Transient feeding curve Species concentrations

Eick, Bai, Einarsrud, Feng, Hua, Witt, (2015) 11th Int. Conf. CFD in the Minerals and Process Industries



Mesh adjustments:
• Dynamic tracking of Bath/Metal interface using Fluent VOF 

(volume fraction 0.5) and sliding mesh approach to adjust 
anode bottom shape to metal pad profile

• Spring smooth is used to improve volume mesh quality

Steady state metal pad profile and MHD prediction
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J. Hua et al, Light Metals 2014, 691



Simulation result:
Metal pad profile 
(interface between bath and metal 
layer)
• Introduces an inclination of 

anode bottom due current 
dependent anode consumption 

• Metal pad profile transferred to 
full cell bath flow model

Steady state metal pad profile and MHD prediction
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J. Hua et al, Light Metals 2014, 691

Velocity field:
Metal surface speed
• Metal pad surface speed 

transferred to full cell bath flow 
model



Water model

Macro-scale model

Plant measurements

Micro-scale model

bubble dynamics

CFD model development cycle

CSIRO’s integrated modelling approach to 
electrolyte modelling
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Air-Water flow in CSIRO 3 anode model

Feng et.al., (2010) J. Comp. Multiphase Flows 2(3) 179-188
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Bubble dynamics in ACD
Case 1 CO2-cryolite, contact angle 60°, σ 0.132 N/m, ρ 0.4 / 2100 kg/m3
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Using bubble flow and resolved bubble models to 
improve two fluid model closures

Case 2 Air-water, contact angle 120°, σ 0.072 N/m, ρ 1.2 / 998 kg/m3

Case 3 Air-water, contact angle 60°, σ 0.132 N/m, ρ 0.4 / 2100 kg/m3

Zhao, Zhang, Feng et.al., (2014) Australasian Fluid Mechanics Conference, Melbourne, Australia



Steady State Full Cell Bath Flow Model

Bath Flow Model – Steady State
• Eulerian-Eulerian,  two-fluid model 
• Conservation equations for phase mass and phase momentum 

(gas and cryolite)
• MHD forces & current density included (no induced currents and 

fields*)
• Modified κ-ε turbulence model in liquid phase only.
• Bubble drag and phase turbulence from zero equation model.
• Time averaged gas distributions, gas & liquid velocities and 

turbulence quantities.
• Anode shape, metal pad profile & velocity boundary condition.

*) σbath=250 S/m, σAl = 3000000 s/m

Witt et al, 10th Int. Conf. on CFD in Oil & Gas, Metallurgical &Proc. Ind. Trondheim, Norway
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Modelling implementation
• Anodes of different age considered
• Ledge profile of sides and ends
• Metal pad profile 

Anode with 
deep, 
flat and 
no slots

Alumina Feed 
Area

Free Surface
Treated as a degassing 

boundary

Anode Base
Gas inlet through red 

surfaces

Steady State Full Cell Bath Flow Model
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Witt et al, 10th Int. Conf. on CFD in Oil & Gas, Metallurgical &Proc. Ind. Trondheim, Norway



Simulation results
• Velocity field stable against temperature 

changes
• Velocity field stable against viscosity 

changes
• Turbulent viscosity 1000 time higher than 

bath viscosity
• High cross flow speed in area with no slots

Steady State Full Cell Bath Flow Model
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Witt et al, 10th Int. Conf. on CFD in Oil & Gas, Metallurgical &Proc. Ind. Trondheim, Norway



Simulation results
• Gas accumulation below anode

and in slot visible
• Simulation indicating 

performance deficit of anode 
toward end of anode cycle

• Reduced current flow under old anodes
• Coupling between gas generation and current

Steady State Full Cell Bath Flow Model
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Model application
The impact of the slots for guiding the bubble from the anode bottom 

Peter Witt  | NETL Workshop, 9-10 August 2016 

Transient Bubble and Chemical Reaction Flow Model
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Simulation results – Full Cell
• Underfeeding and overfeeding cycles can 

be evaluated

Transient Alumina Reaction and Distribution Model
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Critical areas can be identified
To low concentration => anode effect
To high concentration => sludging

Modelling approach
Transient transport model 
• Time averaged fluxes used to 

transport of reacting species

• Steady state bath flow field is 
fixed boundary condition.

• Chemical reaction model with 
6 species developed 



Conclusion
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Presented multi-scale & multi-physic examples of where we 
have used CFD for industrial applications including:

• Hybrid TFM-DEM model for Coal Beneficiation Fluidised Bed

• Coase grain simulation of a coker

• Population balance model for slurry flow in a thickener

• Hall-Héroult aluminium reduction cell

Further improvements needed in sub-model (drag, turbulence..) 
Better ways to link resolved models to large scale “process” models
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