

Multiphase CFD Modelling at CSIRO

Peter Witt¹, Yuqing Feng¹, Qinggong Wang^{1,2} & Jon Boulanger¹

¹CSIRO Australia, ²Tsinghua University, China

Peter Witt | Research Team Leader | Fluids Process Modelling

9 August 2016

MINERAL RESOURCES

Hybrid TFM-DEM

Coal Beneficiation Fluidised Bed

2 | Peter Witt | NETL Workshop, 9-10 August 2016

Coal Beneficiation Fluidized Bed

- Process for separating lighter coal from denser gangue particles
- Magnetite bed material $\rho = 4200 \text{ kg/m}^3 \phi = 200 \mu \text{m}$
- Fluidized with air @ 25°C
- Coal ρ = 1400-2700 kg/m³ ϕ =1.3-6.7m

Qinggong Wang et al. (2015) Chem. Eng J. 260, 240-257

Numerical Approaches for Gas-Particle Systems

Segregation behaviour with coal diameter

Coal particle ϕ 3 mm

Coal particle ϕ 4.3 mm

Coal particle ϕ 6.7 mm

Air velocity 0.1 m/s = 1.5 U_{mf} | Bed of 200 μ m magnetite particles: ρ = 4200 kg/m³

Qinggong Wang et al. (2015) Chem. Eng J. 260, 240-257

5 | Peter Witt | NETL Workshop, 9-10 August 2016

Predicted and Measured

CSIRC

Qinggong Wang et al. (2015) Chem. Eng J. 260, 240-257

Effect of fluidizing velocity

Fluidised Bed Coker

Coase Grain Modelling

1/19th Scale Syncrude Coker Geometry & BCs

Nozzle treatment - Resolved

- Six levels of feed nozzles
- Total of 92 feed nozzles
- 5.5mm square section
- 20 attrition nozzle
- 3mm square section
- Mesh not good resolution of nozzle exit

Nozzle treatment – Sources

- Nozzles not resolved
- Mass and momentum added using source terms
- Merry jet penetration used to calculate source location

$$\frac{L}{d_o} = 5.25 \left[\frac{\rho_o u_o^2}{(1 - \alpha_g) \rho_s g d_p} \right]^{0.4} \left(\frac{\rho_g}{\rho_s} \right)^{0.2} \left(\frac{d_p}{d_o} \right)^{0.2} - 4.5$$

- Jet length taken as 58% of Merry length
- Based on Li (2009) GLAB report
- Distributed along length of jet mass : 15%, 15%, 70% mom : 40%, 50%, 10%

Stage 2 – Coarse Grain Model - Drag

- Coarse grain model of Igci-Sundaresan.
- Corrections to drag, solids viscosity and solid pressure to account for sub-grid clustering effects

Igci, Pannala, Benyahia & Sundaresan (2012)

Results – Drag Models

- Voidage Good agreement mostly.
- Upper section over predicted
- Velocity over predicted in top and centre
- Up and down flow boundary reasonable

Solid Tracers

Solid Tracer at standpipe

Gives average solid velocity of 1.6 [m/s] c.f. measured velocity of 0.9 [m/s]

Tracer Break Through Times

	Tracer 1	Tracer 2	Tracer 3	Tracer 4	Tracer 5	Average
Solid Break through Time [s]	0.61	0.55	0.49	0.6	0.66	0.582
Gas Break through Time [s]	0.2	0.28	0.21	0.25	0.23	0.234

Gives average solid velocity of 1.6 [m/s] c.f. measured velocity of 0.9 [m/s]

Feed Nozzle Model

- 2D axi-symmetric
- 2 / 3 Phase steam / bitumen steam / bitumen / coke
- Phase inversion bubble to drops
- Number density model for bubble/drop diameter
- Based on work from UBC Pougatch *etal.*

Feed Nozzle Model

Discharging into air

Gas Volume Fraction

Bubble Diameter [m]

Drop Diameter [m]

18 | Peter Witt | NETL Workshop, 9-10 August 2016

Comparison to Measurements

Feed Nozzle into a Fluidized Bed

- 2D model not really adequate
- 3D transient model needed
- Sources for momentum, gas and liquid deposition could be determined
- Sources used in full coker model to improve results

Thickener Modelling

Two phase slurry flow with Population Balance

AMIRA P266 Improved Thickener Technology

- Multi sponsor project over 20 yrs
- 21 Industrial Customers
- Over \$750mil NPV savings
- Multiphase slurry flow
 - CFD & UVP measurements
- Flocculation Expt. & Population balance, CFD
- Slurry unified rheology:
 - Hindered settling
 - Sedimentation
 - Yield stress
- Raking
- Control

OTAL

Solid-liquid separation in thickener/clarifier

- Continuous gravity settling tank
- High solid underflow, clear overflow
- Feedwell dissipates feed momentum + mixing chamber to flocculate particles to increase settling rate.

Flocculation Process

Turbulent flocculant/particle mixing

Flocculant adsorption (turbulent collision)

Aggregation (turbulent collision)

Breakage (turbulent shear)

24 | Peter Witt | NETL Workshop, 9-10 August 2016

Combined population balance & CFD model

- Full PB size distribution in each cell
- ~100,000-500,000 nodes
- Coded as Fortran subroutine in CFX-4, CFX-5 & OpenFOAM
- Fully coupled to flow solution (viscosity, settling velocity, shear)
- Allows feedwell optimisation (geometry, flocculant addition point, dilution)

Feedwell sub-model validation

CFD simulation:

- very similar flow structures
- velocity profiles agree well

Aggregate size measured by Lasentec probe at feedwell outlet and compared to CFD prediction.

measurements in a model feedwell

Feedwell Design Improvements

Closed feedwell – current design

CSIRO Novel feedwell

Main features:

- New concept: separate zones for momentum dissipation and flocculation
- Ability to cope with wide range of feed variations
- Simple design and easy to manufacture and retrofit

Potential for Control ...

Carry out a matrix of CFD simulations

Develop surrogate models to cover the window of operating conditions

- CFD is not being used for control.
- Interrogation of surrogates is simple/rapid.

Interrogate surrogates as part of thickener control on the basis of monitored feed properties

Example 1-to-1 CFD (Sunrise Dam)

Problem:

- Paste thickener treating gold tailings that are then pumped to a central tailings discharge area.
- Low underflow density 55 wt%, low yield stress (7-12 Pa).
- Severely shear thinning; zero beach angle limits storage capacity.

Approach:

• CFD model used to determine factors limiting flocculation efficiency within the full-scale feedwell.

Recommendation:

- Install half-shelf and remove existing baffles.
- Add flocculant through two specific sparges locations.

After:

- Underflow density increased to 60-66 wt%, gave beach angle 2°.
- Eliminated need to duplicate Tailings Storage Facility (saved \$20 m).
- Increased water recovery, reduced flocculant dosage, reduced cyanide to tailings (saved >\$0.15 m pa).

Aluminium Electrolysis Process

Multi-phase & Multi-physics Modelling

Reduction of Alumina to Al Metal Aluminium Electrolysis Process

- 15g Coke can requires 0.9kWh elec. 40W globe 23hrs or 11 laptop batteries @ 0.08kWh
- Aluminium metal refined from alumina.
- Operates at ≈960°C.
- Very high electric currents and magnetic fields.
- Lorentz, Marangoni & electrochemical effects

CSIRC

Multi-physics in Al Reduction Cells

Multi-scale, Multi-physics Simulation Environment

Steady state metal pad profile and MHD prediction

Mesh adjustments:

 Dynamic tracking of Bath/Metal interface using Fluent VOF (volume fraction 0.5) and sliding mesh approach to adjust anode bottom shape to metal pad profile

• Spring smooth is used to improve volume mesh quality

J. Hua et al, Light Metals 2014, 691

J. Hua et al, Light Metals 2014, 691

CSIRO's integrated modelling approach to electrolyte modelling

CFD model development cycle

CSIRC

Air-Water flow in CSIRO 3 anode model

Feng et.al., (2010) J. Comp. Multiphase Flows 2(3) 179-188

Bubble dynamics in ACD

Using bubble flow and resolved bubble models to improve two fluid model closures

Zhao, Zhang, Feng et.al., (2014) Australasian Fluid Mechanics Conference, Melbourne, Australia

7

function with time

Bath Flow Model – Steady State

- Eulerian-Eulerian, two-fluid model
- Conservation equations for phase mass and phase momentum (gas and cryolite)
- MHD forces & current density included (no induced currents and fields*)
- Modified κ - ϵ turbulence model in liquid phase only.
- Bubble drag and phase turbulence from zero equation model.
- Time averaged gas distributions, gas & liquid velocities and turbulence quantities.
- Anode shape, metal pad profile & velocity boundary condition.

*) σ_{bath} =250 S/m, σ_{AI} = 3000000 s/m

Witt et al, 10th Int. Conf. on CFD in Oil & Gas, Metallurgical & Proc. Ind. Trondheim, Norway

Modelling implementation

- Anodes of different age considered
- Ledge profile of sides and ends
- Metal pad profile

Witt et al, 10th Int. Conf. on CFD in Oil & Gas, Metallurgical & Proc. Ind. Trondheim, Norway

Simulation results

- Velocity field stable against temperature changes
- Velocity field stable against viscosity changes
- Turbulent viscosity 1000 time higher than bath viscosity
- High cross flow speed in area with no slots

Witt et al, 10th Int. Conf. on CFD in Oil & Gas, Metallurgical & Proc. Ind. Trondheim, Norway

Simulation results

- Gas accumulation below anode and in slot visible
- Simulation indicating performance deficit of anode toward end of anode cycle
- Reduced current flow under old anodes

Transient Bubble and Chemical Reaction Flow Model

Model application

The impact of the slots for guiding the bubble from the anode bottom

Transient Alumina Reaction and Distribution Model

Simulation results – Full Cell

- Underfeeding and overfeeding cycles can be evaluated
 - Critical areas can be identified

To low concentration => anode effect

To high concentration => sludging

Modelling approach Transient transport model

- Time averaged fluxes used to transport of reacting species
- Steady state bath flow field is fixed boundary condition.
- Chemical reaction model with 6 species developed

Conclusion

Presented multi-scale & multi-physic examples of where we have used CFD for industrial applications including:

- Hybrid TFM-DEM model for Coal Beneficiation Fluidised Bed
- Coase grain simulation of a coker
- Population balance model for slurry flow in a thickener
- Hall-Héroult aluminium reduction cell

Further improvements needed in sub-model (drag, turbulence..) Better ways to link resolved models to large scale "process" models

CFD computational Auid dynamics Twelfth International Conference on **Computational Fluid Dynamics** in the Oil & Gas, Metallurgical and Process Industries 30 May – 1 June 2017, Trondheim, Norway

Announcement:

SINTEF to organise next conference in Norway.

Industries Covered:

- Pragmatic industrial modelling
- Oil & Gas pipeflow & processing
- Chemical processing

- Multiscale modelling
- CFD in Cardiovascular medicine
- Metallurgical applications
- Others...

More information : Jan.E.Olsen@sintef.no

Jan Eric Olsen– Chairman www.cfd.com.au/cfdconf

Acknowledgements

Peter Witt Yuqing Feng Phil Schwarz Jon Boulanger

Ingo Eick

Mike Wormsbecker Kevin Reid Craig McKnight

Zhi-Bin Zhao Kai-Yu Zhang Zhao-Wen Wang

Fluids Process Modelling Peter Witt Research Team Leader t + 61 3 9545 8902 e Peter.Witt@csiro.au w www.csiro.au w people.csiro.au/W/P/peter-witt.asp

MINERAL RESOURCES www.csiro.au

