SMART CFD PROXY

REPLICATING CFD RESULTS ACCURATELY & AT HIGH SPEED

Shahab D. Mohaghegh¹, Mehrdad Shahnam², Amir Ansari¹, Ali Takbiri¹, Ebrahim Fathi¹, and Jean F. Dietiker²

¹West Virginia University ²DOE-NETL

Outline

- Smart Proxy
 - Engineering Application of Big Data Analytics
- Original Application in Reservoir Modeling
 - Tracking Pressure & Saturation Changes at the Grid Block Level
- Application to CFD
 - Multi-Phase Fluidized Bed (Proof of Concept)

Computational Science

- Numerical solution to complex, multi-physic, non-linear, partial differential equation emerged, when
 - Engineering models became too complex to be solved analytically,
 - High speed computers became widely available.

Computational Footprint

- Our models soon increased in size such that use of super computers and CPU clusters became a necessity to solve serious problems.
- Proxy models are used to address the extensive computational cost of the numerical simulation models.

Proxy Models

- Proxy models attempt to behave like the original models but with lower computational cost.
- The current paradigm for developing proxy models is to simplify the original model.
- Existing proxy models are either:
 - Statistics-based (response surfaces curve fit at specific locations)
 - Physics-based (Reduced Physics)
 - Coarse Models (low resolution)

Paradigm Shift in Proxy Modeling

- In this new paradigm of developing proxy models,
 - The proxy model represents the entire system.
 - Physics of the model is <u>**Not</u>** simplified.</u>
 - Model resolution is **<u>Not</u>** reduced.

• In this new paradigm, data (generated by CFD), and not the physics, will be the basis for the proxy model.

Paradigm Shift in Proxy Modeling

 Smart Proxy uses the pattern recognition capabilities of Artificial Intelligence and Data Mining (Big Data Analytics) to <u>LEARN</u> and then <u>MIMIC</u> the behavior of the original CFD.

 Smart Proxy is trained using massive amount of data that is generated from (only a handful of) CFD models runs and validated using blind CFD runs.

Paradigm Shift in Proxy Modeling

- A single run of the original model is treated as a treasure trove of data and information that can be used to train and calibrate a new, smart model.
- This technology is the manifestation of <u>"Big Data Analytics"</u> in engineering problem solving, specifically, in the numerical modeling arena.

Surrogate Reservoir Modeling - SRM

Smart Proxy Model for high Speed Replication of the Results of Numerical Reservoir Simulator

RESERVOIR SIMULATOR: ECLIPSE Schlumberger

Numerical Model Characteristics

Study Completed	2005
Implemented	2006
Field Results Published (SPE 170664)	2014
Size of the Full Field Model	1MM Grid
Size of the rull rield woder	Blocks
Formation Type	Naturally Fractured Carbonate
Number of Wells	167 (Horizontal)
Simulation Run	10 Hours on 12 parallel CPU

RESERVOIR SIMULATOR: ECLIPSE Schlumberger

Field Production Optimization Study

RESERVOIR SIMULATOR: ECLIPSE Schlumberger

Field Production Optimization Study

RESERVOIR SIMULATOR: POWERS SAUDI ARAMCO

Black Oil Simulation Green Field 6.5 MM Grid Blocks

RESERVOIR SIMULATOR: POWERS SAUDI ARAMCO

Black Oil Simulation Green Field 6.5 MM Grid Blocks

•

0 0

Otway CO₂ Seq. Project, Australia

1,301

1,077

853

629 405

History Matched Perm File: Real Case User: Shohreh Date: 5/14/2012 Z/X: 4.00:1 1,901 1,714 1,527 1,340 1,152 Permeability Maps 965 778 591 403 216 29 Low perm High perm File: Scenario1-Hig Permeability I (md) 2008-03-01 User: Shohreh Date: 5/14/2012 File: Scenario1-Lov Z/X: 4.00:1 User: Shohreh Date: 5/14/2012 Z/X: 4.00:1 2,646 CRC1 779 2,422 708 2,198 638 1,974 567 1.749 497 426 1,525

RESERVOIR SIMULATOR: AMEX

COMPUTER MODELING GROUP

356

286

215

145

Otway CO₂ Seq. Project, Australia

Pressure Distribution

Otway CO₂ Seq. Project, Australia

Water Saturation Distribution

SACROC CO, EOR Project, Texas

Gas Saturation 2172-01-01 K layer: 18

RESERVOIR SIMULATOR: AMEX COMPUTER MODELING GROUP

18

SACROC CO₂ EOR Project, Texas

Water

Saturation

Distribution

Actual Data: Realization # 1, Layer= 18, 100 years after Injection, Feature= SW %

Actual Data: Realization # 11, Layer= 18, 100 years after Injection, Feature= SW %

Actual Data: Realization # 12, Layer= 18, 100 years after Injection, Feature= SW %

SRM Results

SRM Data: Realization # 1, Layer= 18, 100 years after Injection, Feature= SW %

SRM Data: Realization # 11, Layer= 18, 100 years after Injection, Feature= SW %

SRM Data: Realization # 12, Layer= 18, 100 years after Injection, Feature= SW %

% Relative Error

Realization # 1, Layer= 18, 100 years after Injection, Feature= Absolute Error of SW %

Realization # 11, Layer= 18, 100 years after Injection, Feature= Absolute Error of SW %

Realization # 12, Layer= 18, 100 years after Injection, Feature= Absolute Error of SW %

SACROC CO₂ EOR Project, Texas

Actual Data: Realization # 8, Layer= 18, 100 yrs after Injection, Feature= Pressure (psi) SRM Results

SRM Data: Realization # 8, Layer= 18, 100 yrs after Injection, Feature= Pressure (psi) % Relative Error

Realization # 8, Layer= 18, 100 yrs after Injection, Feature= Relative Error %

CO₂ Mole Fraction Distribution

Actual Data: Realization # 9, Layer= 18, 100 yrs after Injection, Feature= Pressure (psi)

Actual Data: Realization # 10, Layer= 18, 100 yrs after Injection, Feature= Pressure (psi) SRM Data: Realization # 9, Layer= 18, 100 yrs after Injection, Feature= Pressure (psi)

SRM Data: Realization #10, Layer=18, 100 yrs after Injection, Feature= Pressure (psi)

Realization # 9, Layer= 18, 100 yrs after Injection, Feature= Relative Error %

Realization # 10, Layer= 18, 100 yrs after Injection, Feature= Relative Error %

SACROC CO₂ EOR Project, Texas

CO2 Mole Fraction %

SRM Results

SRM Data: Realization # 9, Layer= 18, 9 years after Injection, Feature= CO2 Mole Fraction %

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

SRM Data: Realization # 10, Layer= 18, 9 years after Injection, Feature= CO2 Mole Fraction %

SRM Data: Realization # 7, Layer= 18, 9 years after Injection, Feature= CO2 Mole Fraction %

Absolute Error

Realization # 9, Layer= 18, 9 years after Injection, Feature= Absolute Error %

Realization # 10, Layer= 18, 100 years after Injection, Feature= Absolute Error %

Realization # 7, Layer= 18, 100 years after Injection, Feature= Absolute Error %

Pressure Distribution

Actual Data: Realization # 10, Layer= 18, 9 years after Injection, Feature= CO2 Mole Fraction %

Actual Data: Realization # 7, Layer= 18, 9 years after Injection, Feature= CO2 Mole Fraction %

RESERVOIR SIMULATOR: AMEX

COMPUTER MODELING GROUP

SACROC CO₂ EOR Project, Texas

High Resolution Model

COMPUTER MODELING GROUP SACROC CO₂ EOR Project, Texas GB SRM Case 5: PRESS 2012 (psi) - Layer 1 Actual SRM 4750 4750 100 100 4500 4500 80 80 4250 4250 4000 4000 60 60 3750 3750 GB SRM Case 5: GCO2 2012 - Layer 1 40 40 3500 3500 Actual SRM 3250 3250 1.0 1.020 20 100 0.9 100 0.9 3000 3000 0.8 0.8 0 20 40 60 80 20 40 60 80 0 High Resolution 0.7 0.7 0.6 0.6 Relative Error (%) 60 0.5 0.5 50 100 45 0.4 0.4 40 0.3 0.3 80 35 0.2 0.2 30 0.1 25 20 40 15 Error 10 0.50 20 Model 100 0.45 5 GB SRM Case 5: SW 2012 - Layer 1 40 60 80 SRM Actual 1.0 60 0.9 100 0.9 0.8 0.8 80 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0 20 40 60 80 40 0.3 0.3 0.2 0.2 20 0.1 0.1 0.0 0 20 40 60 80 0 20 40 60 80 Error 0.50 0.45 100 0.40 80 0.35 0.30 60 0.25 0.20 0.15 0.10 20 0.05 0.00 23 0 20 40 60 80

RESERVOIR SIMULATOR: AMEX

RESERVOIR SIMULATOR: AMEX

COMPUTER MODELING GROUP

SACROC CO₂ EOR Project, Texas

100

20

High Resolution Model

Smart Proxy for CFD

CAN SMART PROXY BE SUCCESSFULLY APPLIED TO CFD?

A Multi-phase CFD Model

 Initial pressure is 1 atm. in the entire domain 1 atm. = 101,325 Pa

Grid Classification	I, j, k - Cell size	No. of Cell	No. of Grid
Coarse	8 x 48 x 8 (15 mm)	3,072	3,969
Medium	12 x 72 x 12 (10 mm)	10,368	12,337
Fine	18 x 108 x 18 (6.6 mm)	34,992	39,349
Very Fine	27 x 162 x 27 (4.4 mm)	118,098	127,792

Three different physics

Early-time Time step 200 Mid-time Time step 1000 Late-time Time step 4000

Early-time Time step 200

Five cross-sections used to show details in 2-D

K = 1

Mid-time Time step 1000

K = 1

K = 1

Data from the CFD Runs

Rey factors of multi-phase gas-solid system		
Volume fraction (ε)	Gas Density (ρ)	
Velocity vector of gas (u, v, w)	Particle diameter (d)	
Velocity vector of solid (u, v, w)	Maximum packing volume fraction (ϵ^*)	
Pressure field of gas (P)	Location to the boundaries	
Pressure field of solid(P)	Location to the interface(x, y, z)	
Time (t)	Viscosity (μ and λ)	
	Gravity force (g)	

Key factors of multi-nhase gas-solid system

Data from the CFD Runs Spatio-Temporal Database Generated to be used by the Smart CFD Proxy

Displaying Smart CFD Proxy

- Results are displayed in 5 different cross-sections:
- K = 1, 7, 14, 21, 27

$$\begin{array}{c} x = 27 \\ x = 162 \\ x = 27 \end{array}$$

Thank you

Part One – Non-Cascading Results

- In Non-Cascading scheme at every time-step actual CFD results are used as input and the trained Smart Proxy forecasts the results for the next time-step.
- No error accumulation takes place in this scheme.
- This scheme, as the first step, explores the learning capabilities of the Smart Proxy.

Early Time Results

• Smart Proxy is generated for the early time in the system when the bubble behavior is reasonably calm and non-chaotic.

Results of Layer 1 – Gas Fraction

- Model was trained using Time-step 101 as input and Time-step 102 as output.
 - Trained on 75% of data and validated using the remaining 25%
- Trained model was deployed in forecast mode and generated Timestep 102 through Time-step 126
- Results generated by the Smart Proxy are compared with actual CFD output.

n C

Results of Layer 27 – Gas Fraction

- Model was trained using Time-step 101 as input and Time-step 102 as output.
 - Trained on 75% of data and validated using the remaining 25%
- Trained model was deployed in forecast mode and generated Timestep 102 through Time-step 126
- Results generated by the Smart Proxy are compared with actual CFD output.

n

С

Multiple bubbles in the system

• The process is now repeated when several bubbles have already been formed in the system.

Results of Layer 1 – Gas Fraction

- Model was trained using Time-step 4001 as input and Time-step 4002 as output.
 - Trained on 75% of data and validated using the remaining 25%
- Trained model was deployed in forecast mode and generated Timestep 4001 through Time-step 4040
- Results generated by the Smart Proxy are compared with actual CFD output.

n C

Results of Layer 7 – Gas Fraction

- Model was trained using Time-step 4001 as input and Time-step 4002 as output.
 - Trained on 75% of data and validated using the remaining 25%
- Trained model was deployed in forecast mode and generated Timestep 4001 through Time-step 4040
- Results generated by the Smart Proxy are compared with actual CFD output.

Results of Layer 14 – Gas Fraction

- Model was trained using Time-step 4001 as input and Time-step 4002 as output.
 - Trained on 75% of data and validated using the remaining 25%
- Trained model was deployed in forecast mode and generated Timestep 4001 through Time-step 4040
- Results generated by the Smart Proxy are compared with actual CFD output.

Results of Layer 21 – Gas Fraction

- Model was trained using Time-step 4001 as input and Time-step 4002 as output.
 - Trained on 75% of data and validated using the remaining 25%
- Trained model was deployed in forecast mode and generated Timestep 4001 through Time-step 4040
- Results generated by the Smart Proxy are compared with actual CFD output.

n

С

Results of Layer 27 – Gas Fraction

- Model was trained using Time-step 4001 as input and Time-step 4002 as output.
 - Trained on 75% of data and validated using the remaining 25%
- Trained model was deployed in forecast mode and generated Timestep 4001 through Time-step 4040
- Results generated by the Smart Proxy are compared with actual CFD output.

Part Two - Cascading Results

- In Cascading scheme at every time-step results from the Smart Proxy are used as input and the trained Smart Proxy forecasts the results for the next time-step. (Smart Proxy receives feedback from itself)
 - Models are developed for all output variables in CFD such as Void Fraction, and gas/solid Pressure and Velocity.
- In this scheme the error has the opportunity to accumulate.
- Limits of the information content of each time-step is explored in this scheme.

Early Time Results

• Smart Proxy is generated for the early time in the system when the bubble behavior is reasonably calm and non-chaotic.

Results of Layer 1 – Gas Fraction

- Model was trained using Time-step 101 as input and Time-step 102 as output.
 - Trained on 75% of data and validated using the remaining 25%
- Trained model was deployed in forecast mode and generated Timestep 101 through Time-step 105
- Results generated by the Smart Proxy are compared with actual CFD output.

Results of Layer 7 – Gas Fraction

- Model was trained using Time-step 101 as input and Time-step 102 as output.
 - Trained on 75% of data and validated using the remaining 25%
- Trained model was deployed in forecast mode and generated Timestep 101 through Time-step 105
- Results generated by the Smart Proxy are compared with actual CFD output.

С

Results of Layer 14 – Gas Fraction

- Model was trained using Time-step 101 as input and Time-step 102 as output.
 - Trained on 75% of data and validated using the remaining 25%
- Trained model was deployed in forecast mode and generated Timestep 101 through Time-step 105
- Results generated by the Smart Proxy are compared with actual CFD output.

Results of Layer 21 – Gas Fraction

- Model was trained using Time-step 101 as input and Time-step 102 as output.
 - Trained on 75% of data and validated using the remaining 25%
- Trained model was deployed in forecast mode and generated Timestep 102 through Time-step 126
- Results generated by the Smart Proxy are compared with actual CFD output.

Results of Layer 27 – Gas Fraction

- Model was trained using Time-step 101 as input and Time-step 102 as output.
 - Trained on 75% of data and validated using the remaining 25%
- Trained model was deployed in forecast mode and generated Timestep 101 through Time-step 105
- Results generated by the Smart Proxy are compared with actual CFD output.

Multiple bubbles in the system

• The process is now repeated when several bubbles have already been formed in the system.

Results of Layer 1 – Gas Fraction

- Model was trained using Time-step 4001 as input and Time-step 4002 as output.
 - Trained on 75% of data and validated using the remaining 25%
- Trained model was deployed in forecast mode and generated Timestep 4002 through Time-step 4014
- Results generated by the Smart Proxy are compared with actual CFD output.

Results of Layer 7 – Gas Fraction

- Model was trained using Time-step 4001 as input and Time-step 4002 as output.
 - Trained on 75% of data and validated using the remaining 25%
- Trained model was deployed in forecast mode and generated Timestep 4002 through Time-step 4010
- Results generated by the Smart Proxy are compared with actual CFD output.

Results of Layer 14 – Gas Fraction

- Model was trained using Time-step 4001 as input and Time-step 4002 as output.
 - Trained on 75% of data and validated using the remaining 25%
- Trained model was deployed in forecast mode and generated Timestep 4002 through Time-step 4024
- Results generated by the Smart Proxy are compared with actual CFD output.

Results of Layer 21 – Gas Fraction

- Model was trained using Time-step 4001 as input and Time-step 4002 as output.
 - Trained on 75% of data and validated using the remaining 25%
- Trained model was deployed in forecast mode and generated Timestep 4002 through Time-step 4020
- Results generated by the Smart Proxy are compared with actual CFD output.

Results of Layer 27 – Gas Fraction

- Model was trained using Time-step 4001 as input and Time-step 4002 as output.
 - Trained on 75% of data and validated using the remaining 25%
- Trained model was deployed in forecast mode and generated Timestep 4002 through Time-step 4012
- Results generated by the Smart Proxy are compared with actual CFD output.

Paradigm Shift in Proxy Modeling

- **VERY LARGE AMOUNTS OF DATA** is carefully extracted from a handful of runs of the original model.
- The process of data extraction from several runs of the original model is *ENGINEERED* such that it can be used to train, calibrate and validate a smart, new model.

Paradigm Shift in Proxy Modeling

- The Smart Proxy model is developed using <u>MACHINE LEARNING</u> that is now the main paradigm for treating and handling <u>"BIG DATA"</u>.
- The Smart Proxy learns to mimic the behavior of the original model with all its complexities and intricacies.
- Once developed, the Smart Proxy Model runs at very low computational cost (thousands of simulation runs in minutes).

The Spatio-Temporal Database

Tier One Neighbor Cells

Cell _{ijk} at time step n								
ε_g	Р	P_s	u_g	v_g	w _g	u_s	v_s	W _s

		Tie	r Cell _i	_{jk} at i	time s	tep n		
ϵ_g	P	P_s	u_g	v_g	w_g	u_s	v_s	w _s

		Cell	_{ijk} at	time s	step (r	ı + 1)		
ε_g	Р	P_s	u_g	v_g	wg	u _s	v_s	w _s

Number of inputs 6 + 9 + 6 x 9 = 69 Number of outputs = 9

Tornado chart by adding all the weights

Tornado Chart of Neural Network Weights

Eliminating 14 parameters

By parameter
ug-west
ug-north
ug-south
ug-east
vg-self
vg-west
wg-north
us-north
ws-west
vs-west
vs-bottom
distance to south
distance to east
distance to west

By location
vg-self
vs-bottom
ug-north
wg-north
us-north
ug-south
ws-west
vs-west
ug-west
vg-west
ug-east
distance to south
distance to east
distance to west

The Tier System

The Tier System

Tier One Interface: Plane Tier Two Interface: Line Tier Three Interface: Point

Tier One - Subsystem

