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Biomass gasification overview

Biomass Gasification: the thermal decomposition of biological
materials at sub-stoichiometric oxygen levels, generating producer
gas (CO, H,, CO,, and CH,).

f o Oxygen
Downstream applications (sub-stoichiometry levels)

O Fischer-Tropsch synthesis '

O Methanol synthesis |
. . i Biomass
O Internal combustion engines |
O Steam turbines
O Gas turbines ‘
Syngas (CO, H,, CH,, CO,)
. Contaminants (Char, Ash, H.S, NH,, Tar)
Fig. 1: Biomass gasification process.
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Blomass gasification mechanism

T T T T T T T T T T T T T T T T T T T T T e e 'I

Step | Step I Step llI
Drying Devolatilization Char reactions

Volatiles
Step IV

I
|
|
|
|
|
|
|
|
|
|
|
|
|
i
i
|
|
|
|
|
: |
Gas phase reactions i
|
|
|
|
|
|

Gas products Char |
€O, CO,, CH,, H,0, H,, C,-C, () |
Contaminants: NH;, H,S, COS, CS2, NO, i
Fig. 2: Gasification flow diagram. Basu, 2010

Abdoulmoumine et al., 2015
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Problem statement

Contaminants present in producer gas reduce its usefulness.
O Foremost challenge for biomass gasification projects
O Downstream catalyst deactivation concerns and air pollution issues

O Additional cost for producer gas cleanup process

Chemical . Numerical
. . Flow behavior .
kinetics modeling

Objective: Develop a CFD-DEM numerical model to simulate the formation of producer
gas and nitrogen contaminants (HCN and NH;) during biomass gasification.
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Simulation approach
OpenVFOAM was used in this work.

Methodology was based on Eulerian-Lagrangian framework

Materials simulated were gas, biomass particles, and sand particles

Devolatilization model

l Turbulence model Radiation model
Mass - Momentu.m Energy. Chemical species
conservation conservation conservation conservation
Drag model Heat transfer model
Particle shrinkage model Collision model Homogeneous reactions model

Fig. 3: Models and sub-models needed in the CFD framework
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Method: Gas phase equations

M t. &g Gas volume fraction
8 dss conservation 3 .
— (e + V (s U — S U, Gas velocity
8t( gpg) ( gpg g) p Sp Mass source

T Stress tensor
Energy conservation Q0T 1entum source

8 5 Energy
& (Egng) + V ) (SgUg(ng + p) ) - V . (egaefths) + Sh + Sp'h + Srad (P;eff :hermal diffusivity

Sh Reaction enthalpy
source

Momentum conservation Sph  Particle enthalpy source

6 Sraqa  Radiation source

g (Sgngg) + V. (SgnggUg) = —Vp + V- (Egt) + Egpgg + Sm Y; Species mass fraction
Dege  Mass diffusion constant

Spy; Particle species source

Chemical species conservation &

o
8t (2gpgYi) + V- (2gpgUgYi) = V - (£gPgDers?Yi) + Spyy; + Sy,

Reaction species source
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Method: Particle and reaction models

Table 3. Models used to describe particles and chemical reactions behaviors.

Model used Heterogeneous reaction

Turbulence mixing k- turbulence model C + H,0 - CO + H,
Heat transfer Nusselt model C + CO, - 2CO
Particle collision Spring-slider-damper model
Particle drag force Gidaspow model Homogenous reaction
Homogenous reactions Arrhenius model CH, + 20, - CO,+2H,0
Heterogeneous reactions Diffusion limited Arrhenius model H,+ O, - H,0
Particle shrinking Mass-proportional shrinkage model CH4 +H,0 > CO+3H,
2C0+0, — 200,
CO, +H, - CO+H,0
HCN+H,O - NH3+CO
2NH 3 — N, +3H,
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Method: Meshing
| I—bGas and char outlet

—

Mesh statistics:

Number of points =3300
38 mm
Number of faces = 6119
Max aspect ratio =5.765
Min. face area = 3.81e-06 m?
E Max. face area =1.94e-05 m?
Sl\\ Min. volume =1.91e-08 m3
Max. volume =1.94e-08 m3

Max. non-orthogonality =0.000

Biomass inlet Max. skewness =1.33e-13

—

v
I—Gas inlet

Fig. 4: Reactor geometry and meshing.
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Method: CFD parameters settings

Table 6. Proximate Analysis of Biomass Table 7. Gas composition of volatile gas
Moisture Content 12.00 CH, 0.100
Ash Content 4.31 H, 0.024
Volatile Matter Content 82.27 Co, 0.198
Fixed Carbon Content 13.42 co 0.619
*Moisture content values are on wet basis and all other values are on dry basis. HZO 0.050

HCN 0.005
NH 0.003

3

Oevermann et al. 2010
Abdoulmoumine et al., 2014
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Results: Gas phase physical variable

https://www.youtube.com/watch?v=KkT1gvxtbY0
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Results: Gas phase chemical variables
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Results: Biomass particle tracking
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Fig. 7: Snapshot of biomass properties at the end of the simulation.
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Conclusions

O Biomass gasification was simulated in an Eulerian-Lagrangian
framework using OpenFOAM.

O Biomass particle properties and positions were tracked.
O Steady-state was achieved at approximately 2 s.

O The average pressure drop along the reactor height was
approximately 1613 Pa at 0.5 m/s superficial air velocity.

0] NH3 and HCN concentrations were obtained. NH3 concentration
was higher than HCN concentration.

O In future works, different operating conditions will be simulated
to established trends and validated.
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INITIATIVE

THANK YOU!
QUESTIONS?
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