CFD-DEM modeling of the formation of producer gas contaminants during biomass gasification

Oluwafemi Oyedeji

Biosystems Engineering and Soil Science, University of Tennessee

Nourredine Abdoulmoumine

Biosystems Engineering and Soil Science, University of Tennessee Center for Renewable Carbon, University of Tennessee

08 - 08 - 2017

Biomass Thermochemical Conversion & Upgrading Center for Renewable Carbon

Biomass gasification overview

Biomass Gasification: the thermal decomposition of biological materials at sub-stoichiometric oxygen levels, generating producer gas (CO, H_2 , CO₂, and CH₄).

Downstream applications

- Fischer–Tropsch synthesis
- o Methanol synthesis
- o Internal combustion engines
- o Steam turbines
- o Gas turbines

Real. Life. Solutions.

Biomass Thermochemical Conversion & Upgrading Laboratory

Biomass gasification mechanism

Biomass Thermochemical Conversion & Upgrading Laboratory

3

Problem statement

Contaminants present in producer gas reduce its usefulness.

- Foremost challenge for biomass gasification projects
- Downstream catalyst deactivation concerns and air pollution issues
- o Additional cost for producer gas cleanup process

Objective: Develop a CFD-DEM numerical model to simulate the formation of producer gas and nitrogen contaminants (HCN and NH_3) during biomass gasification.

Simulation approach

 $Open\nabla FOAM$ was used in this work.

Methodology was based on Eulerian-Lagrangian framework

Materials simulated were gas, biomass particles, and sand particles

Fig. 3: Models and sub-models needed in the CFD framework

Biomass Thermochemical Conversion & Upgrading Laboratory

Method: Gas phase equations

$$\label{eq:mass-conservation} \begin{split} \frac{\delta}{\delta t} \big(\epsilon_g \rho_g \big) + \textit{V} \cdot \big(\epsilon_g \rho_g \textbf{U}_g \big) = S_\rho \end{split}$$

Energy conservation

$$\frac{\delta}{\delta t} (\varepsilon_{g} \rho_{g} E) + \nabla \cdot (\varepsilon_{g} U_{g} (\rho_{g} E + p)) = \nabla \cdot (\varepsilon_{g} \alpha_{eff} \nabla h_{s}) + S_{h} + S_{p,h} + S_{rad}$$

$\frac{\delta}{\delta t} (\epsilon_{g} \rho_{g} \mathbf{U}_{g}) + \nabla \cdot (\epsilon_{g} \rho_{g} \mathbf{U}_{g} \mathbf{U}_{g}) = -\nabla p + \nabla \cdot (\epsilon_{g} \mathbf{\tau}) + \epsilon_{g} \rho_{g} \mathbf{g} + S_{m}$

Chemical species conservation

$$\frac{\delta}{\delta t} (\varepsilon_{g} \rho_{g} Y_{i}) + \nabla \cdot (\varepsilon_{g} \rho_{g} \mathbf{U}_{g} Y_{i}) = \nabla \cdot (\varepsilon_{g} \rho_{g} D_{eff} \nabla Y_{i}) + S_{p,Y_{i}} + S_{Y_{i}}$$

Real. Life. Solutions.

Biomass Thermochemical Conversion & Upgrading Laboratory

Method: Particle and reaction models

Table 3. Models used to describe particles and chemical reactions behaviors.

Behavior	Model used
Turbulence mixing	k-ε turbulence model
Heat transfer	Nusselt model
Particle collision	Spring-slider-damper model
Particle drag force	Gidaspow model
Homogenous reactions	Arrhenius model
Heterogeneous reactions	Diffusion limited Arrhenius model
Particle shrinking	Mass-proportional shrinkage model

Heterogeneous reaction $C + H_2O \rightarrow CO + H_2$ $C + CO_2 \rightarrow 2CO$

Homogenous reaction

\rightarrow	$CO_{2} + 2H_{2}O$
\rightarrow	H ₂ O
\rightarrow	CO + 3H ₂
\rightarrow	2CO ₂
\rightarrow	$CO + H_2O$
\rightarrow	NH ₃ + CO
\rightarrow	$N_{2} + 3H_{2}$
	$\begin{array}{c} \rightarrow \\ \rightarrow \end{array}$

Method: Meshing

Mesh statistics:

Number of points	= 3300
Number of faces	= 6119
Max aspect ratio	= 5.765
Min. face area	= 3.81e-06 m ²
Max. face area	= 1.94e-05 m ²
Min. volume	= 1.91e-08 m ³
Max. volume	= 1.94e-08 m ³
Max. non-orthogonality	= 0.000
Max. skewness	= 1.33e-13

Fig. 4: Reactor geometry and meshing.

Biomass Thermochemical Conversion & Upgrading Laboratory

8

Method: CFD parameters settings

Table 6. Proximate Analysis of Biomass

Component	Mass percent		
Moisture Content	12.00		
Ash Content	4.31		
Volatile Matter Content	82.27		
Fixed Carbon Content	13.42		
*Moisture content values are on wet basis and all other values are on dry basis. Table 5. Parameter settings for the simulation syste			

Table 7. Gas composition of volatile gas

Gas component	Mass fraction
CH ₄	0.100
H ₂	0.024
CO ₂	0.198
СО	0.619
H ₂ O	0.050
HCN	0.005
NH ₃	0.003
	Oevermann et al. 2010 Abdoulmoumine et al. 201

Biomass Thermochemical Conversion & Upgrading Laboratory

9

Results: Gas phase physical variable

Biomass Thermochemical Conversion & Upgrading Laboratory

10

Results: Gas phase chemical variables

Results: Biomass particle tracking

Fig. 7: Snapshot of biomass properties at the end of the simulation.

Biomass Thermochemical Conversion & Upgrading Laboratory

Conclusions

- Biomass gasification was simulated in an Eulerian-Lagrangian framework using OpenFOAM.
- Biomass particle properties and positions were tracked.
- Steady-state was achieved at approximately 2 s.
- The average pressure drop along the reactor height was approximately 1613 Pa at 0.5 m/s superficial air velocity.
- $\circ~\rm NH_3$ and HCN concentrations were obtained. $\rm NH_3$ concentration was higher than HCN concentration.
- In future works, different operating conditions will be simulated to established trends and validated.

THANK YOU! QUESTIONS?

Biomass Thermochemical Conversion & Upgrading Laboratory Center for Renewable Carbon

