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The governing equations of a fluid

Convection Pressure Gradient Viscous Forces

= v

\/ - gradient
11 - velocity
P - pressure
P -density

1/ - Kinematic viscosity



Particle Image Velocimetry

Is an image based method used to determine instantaneous velocity
fields by measuring the displacement of a cluster of tracers in a fluid.

e [racer particles are added to
the flow.

e [he particles are illuminated.

e Scattered light recorded.

e Displacements are determined
from correlations in the Fourier
domain.

e This is a fully non-intrusive
method.

PV is NOT perfect.

e fTomographic PIV etc.
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Raffel, Willert, Wereley, Kompenhans.
Particle Image Velocimetry. 2nd Edition,
Springer. 2007






How do we interpret these data?
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This is the Reynolds stress i.e.
momentum flux.

This show regions which can lead to

erosion etc.

BUT

Does not represent any dynamics, Is a

very old hat approach.



Modal Decomposition Techniques

(Hussain, A. 1983) Coherent structures: reality of myth?

e |n fluid mechanics there are —
two main techniques. y  —
e POD (Proper Orthogonal e
= |

Decomposition) - based on

spatial correlations.
e DMD (Dynamic Mode

Decomposition) - based on

temporal correlations™. Data Spatial
e The main aim in a modal modes

Single Time
values evolution

e But what is coherence **
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to extract regions of , 2
coherence. | ;
*not explained today, but see Higham et al. (2017) AWR
**not explained today, but see Higham et al. (In Press) JHR



Proper Orthogonal Decomposition

Time Modes Modes -
< 5 < 5 «lime S
A A A AR
]
5 ]
O
]
a¥s —
]
§ B 8 \ v
= 3 Slngle Values Temporal
S 2 Coefficients
C
In a POD the spatial modes are
ranked by their contribution to the
v v total variance. In fluid mechanics
Input Data Spatial Modes this is could be turbulent kinetic
W H energy / vorticity. We can solve this

using a singular value
decomposition.
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Cylinder wakes
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Test cases




Experimental Setup

Seeding Type Polyamide powder
Specific gravity 1.016 gem ™1
Diameter 100 pm
Light sheet Laser type Double pulsed Nd:YAG
Maximum energy 200 mJ
Wave length 532 nm
Thickness 2mm
Camera Type Imager MX 4M
Resolution 2048 x 2048 px
Pixel size 0.21 mm
Lens focal length 24 mm
Imaging Viewing area 440 mm X 440 mm
PIV Analysis Interrogation area final integration window size 16 px x 16 px
Overlap 5%

Approximate resolution 3.5 mm X 3.5 mm X 3.5 mm

0.30 m
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Q=O 05m3s-! @ Camera | C;\mera 2

Figure 2: View of the measurement section and experimental setup (not to scale)



Streamwise mean flow
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Figure 3: Contour plots of the streamwise mean velocity, U, normalised by the bulk velocity,

Uso, with streamlines overlaid

(Higham J.E. & Brevis W. (In Press) - Experimental Thermal and Fluid Science.)



Streamwise mean flow
(centre line)
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Figure 4: Centre line time averaged statistics. Case I — [, case II — (), case III — X & case

IV - A. (a) ¥ /Uso, (b) v/ /Uso, (c) 0.5(u'?2 +v'2) /U2, & (d) u'v'/UZ..

(Higham J.E. & Brevis W. (In Press) - Experimental Thermal and Fluid Science.)



POD (®1 g 3)
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Figure 7: Top: POD modes ®3. Middle: POD temporal coefficients C3. Bottom: Fourier
Figure 6: Top: POD modes ®;. Middle: POD temporal coefficients C1&C> (grey). Bottom: e
Fourier power spectrum of C;. (®2 is not plotted as it is a conjugate pair of ®;.) power spectrum of Cg.

(Higham J.E. & Brevis W. (In Press) - Experimental Thermal and Fluid Science.)
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Figure 8: Top: POD modes 4. Middle: POD temporal coefficients C4&Cs (grey). Bottom:

Fourier power spectrum of Cy4. (@5 is not plotted as it is a conjugate pair of ®4.)

(Higham J.E. & Brevis W. (In Press) - Experimental Thermal and Fluid Science.)



POD Spectra

FIGURE 6.5: POD spectra where A = diag(S), these values represent the con-
tribution of each the spatial modes ®; to the total variance. Case I — [, case

IT - O, case III — x & case IV — A.

Case I Case I11

(Higham J.E. & Brevis W. (In Press) - Experimental Thermal and Fluid Science.)



Conclusions

The POD offers a wealth of information not typically
attained from time-averaging.

From these results we can see that the structures of the
turbulence has changed.

Therefore, we suggest that the arrangement of the muilti-
scales can be used to manipulate the turbulent flows.

From further work we also show from time resolve data
the ratio between the Taylor and Kolmogorov micro
scales changes.



Future...

e SO0 we know the Navier-Stokes doesn't apply - can
we apply these modal decomposition techniques to
the tluidised beds and the risers...
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