

The governing equations of a fluid

Convection Pressure Gradient Viscous Forces

$$\frac{D\mathbf{u}}{Dt} = \left(-\frac{1}{\rho}\nabla\mathbf{p}\right) + (\nu\nabla^2\mathbf{u})$$

abla - gradient

u - velocity

p - pressure

ho - density

u - kinematic viscosity

Particle Image Velocimetry

Is an image based method used to determine instantaneous velocity fields by measuring the displacement of a cluster of tracers in a fluid.

- Tracer particles are added to the flow.
- The particles are illuminated.
- Scattered light recorded.
- Displacements are determined from correlations in the Fourier domain.
- This is a fully non-intrusive method.
- PIV is NOT perfect.
- Tomographic PIV etc.

Raffel, Willert, Wereley, Kompenhans. Particle Image Velocimetry. 2nd Edition, Springer. 2007

How do we interpret these data?

Adaptation of Taylor's spectrum (with Kolmogorov additions).

Modal Decomposition Techniques

(Hussain, A. 1983) Coherent structures: reality of myth?

- In fluid mechanics there are two main techniques.
- POD (Proper Orthogonal Decomposition) - based on spatial correlations.
- DMD (Dynamic Mode Decomposition) - based on temporal correlations*.
- The main aim in a modal decomposition technique to to extract regions of coherence.
- But what is coherence **

*not explained today, but see Higham et al. (2017) AWR

**not explained today, but see Higham et al. (In Press) JHR

Proper Orthogonal Decomposition

Modification of the modal characteristics of a square cylinder wake obstructed by a multiscale array of obstacles

Cylinder wakes

M. OZGOREN (2005)

Flow structure in the downstream of square and circular cvlinders.

Flow Measurement & Instrumentation

Md. MAHBUB ALAM, **HONGLEI BAI and YU ZHOU (2016)**

Ensemble-averaged measurements in the turbulent near wake of two side-by-side square cylinders

Journal of Fluid Mechanics

V. KOLÁŘ, D. A. LYN, and W. RODI (1997)

Ensemble-averaged measurements in the turbulent near wake of two side-byside square cylinders Journal of Fluid Mechanics

C. SEWATKAR, R. PATEL, A. SHARMA & A. AGRAWAL.

Flow around six in-line square cylinders. Journal of Fluid Mechanics.

D. CHATTERJEE et al. (2009)

Numerical simulation of flow past row of square cylinders for various separation ratios.

Computers & Fluids

M.B. SHYAM KUMAR and S. VENGADESAN (2009)

Large eddy simulations of flow interference between two unequal sized square cylinders

International Journal of Computational Fluid Dynamics

Test cases

Case II Case III Case IV

Experimental Setup

Seeding Polyamide powder Type $1.016~{\rm gcm^{-1}}$ Specific gravity $100 \ \mu \mathrm{m}$ Diameter Light sheet Laser type Double pulsed Nd:YAG Maximum energy 200 mJWave length 532 nm Thickness 2mm Type Camera Imager MX 4M Resolution $2048 \times 2048 \text{ px}$ Pixel size $0.21~\mathrm{mm}$ Lens focal length 24 mm Viewing area $440 \text{ mm} \times 440 \text{ mm}$ Imaging PIV Analysis Interrogation area final integration window size 16 px \times 16 px 75%Overlap Approximate resolution $3.5 \text{ mm} \times 3.5 \text{ mm} \times 3.5 \text{ mm}$

Figure 2: View of the measurement section and experimental setup (not to scale)

Streamwise mean flow

Figure 3: Contour plots of the streamwise mean velocity, U, normalised by the bulk velocity, U_{∞} , with streamlines overlaid

(Higham J.E. & Brevis W. (In Press) - Experimental Thermal and Fluid Science.)

Streamwise mean flow (centre line)

Figure 4: Centre line time averaged statistics. Case I – \square , case II – \bigcirc , case III – \times & case IV – \triangle . (a) u'/U_{∞} , (b) v'/U_{∞} , (c) $0.5(u'^2 + v'^2)/U_{\infty}^2$ & (d) $u'v'/U_{\infty}^2$.

Case I

Case II

Case III

Case IV

POD (Φ_{1 & 3})

Figure 7: Top: POD modes Φ_3 . Middle: POD temporal coefficients C_3 . Bottom: Fourier power spectrum of C_3 .

(Higham J.E. & Brevis W. (In Press) - Experimental Thermal and Fluid Science.)

Figure 6: Top: POD modes Φ_1 . Middle: POD temporal coefficients $C_1\&C_2$ (grey). Bottom:

Fourier power spectrum of C_1 . (Φ_2 is not plotted as it is a conjugate pair of Φ_1 .)

POD (Φ_4)

Figure 8: Top: POD modes Φ_4 . Middle: POD temporal coefficients $\mathbf{C}_4 \& \mathbf{C}_5$ (grey). Bottom: Fourier power spectrum of \mathbf{C}_4 . (Φ_5 is not plotted as it is a conjugate pair of Φ_4 .)

POD Spectra

FIGURE 6.5: POD spectra where $\lambda = diag(\mathbf{S})$, these values represent the contribution of each the spatial modes Φ_i to the total variance. Case $I - \square$, case $II - \square$, case $II - \square$, case $III - \square$, case $III - \square$.

Conclusions

- The POD offers a wealth of information not typically attained from time-averaging.
- From these results we can see that the structures of the turbulence has changed.
- Therefore, we suggest that the arrangement of the multiscales can be used to manipulate the turbulent flows.
- From further work we also show from time resolve data the ratio between the Taylor and Kolmogorov micro scales changes.

Future...

 So we know the Navier-Stokes doesn't apply - can we apply these modal decomposition techniques to the fluidised beds and the risers...

