Application of an Efficient Discrete Particle Model to Simulate an Industrial FCC Regenerator

Liqiang Lu & Sofiane Benyahia NETL 2017 NETL Workshop on Multiphase Flow Science

Aug 8, 2017, Morgantown, W.V.

- 1. General Introduction of Discrete Particle Models
- 2. Coarse Grained Hard Sphere (CGHS)
- 3. Verification and Validation of CGHS
- 4. Simulation of an industrial FCC regenerator using CGHS
- 5. Concluding remarks

Discrete Particle Models: From Atoms to Planets

NET NATIONAL ENERGY TECHNOLOGY LABORATORY

$d\mathbf{x}/dt = \mathbf{v}; d\mathbf{v}/dt = \mathbf{F}/m$

Based on the SCALES of PARTICLES and their INTERACTIONS

- Molecular Dynamic
- Dissipative Particle Dynamic
- Pseudo-Particle Method
- Hard-Sphere Method
- Discrete Element Method
- Coarse Grained Hard Sphere
- Coarse Grained DEM
- Particle In Cell
- Smooth Particle Hydrodynamics

There is nothing cannot be simulated with DPM. If there is one, just make the particle smaller or larger.

Atom

U.S. DEPARTMENT OF ENERGY Lu, L.; Gopalan, B.; Benyahia, S., 2017. Assessment of different discrete particle methods ability to predict gas-particle flow in a small-scale fluidized bed. Industrial & Engineering Chemistry Research, 56, 7865–7876

Outline

- 1. Overview of Discrete Particle Models
- 2. Coarse Grained Hard Sphere (CGHS)
- 3. Verification and Validation of CGHS
- 4. Simulation of an industrial FCC regenerator using CGHS
- 5. Concluding remarks

CGHS: Basic Assumptions and different models in CG

÷

NATIONAL RG TECHNOLOGY

A CFD cell of original system (color stands for different species fraction and temperature, vector stands for velocity)

Same species fraction

÷

U.S. DEPARTMENT OF

♧

(a) Drag force

Lumped into a sphere

(d) Collision force

 $S_{\text{rf}}^{\text{CG}} = \frac{1}{V_{\text{cell}}} \sum_{i=1}^{N_{\text{CGP}}} W_i Q_{i,conv}$ (b) Heat transfer

Lumped into a sphere

	Spring	Dashpot	Friction
M1	$k_{CGP} = k_p$	$e_{\rm CGP} = e_{\rm p}$	$\mu_{CGP} = \mu_{p}$
M2	$k_{\rm CGP} = W k_{\rm p}$	$e_{\rm CGP} = e_{\rm p}$	$\mu_{\rm CGP}$ = $\mu_{\rm p}$
M3	$k_{\rm CGP} = W k_{\rm p}$	$tne_{CGP} = W^{1/2} lne_{p}$	μ_{CGP} = μ_{p}
M4	$k_{CGP} = W^{1/3} k_p$	$e_{\rm CGP} = e_{\rm p}$	μ_{CGP} = μ_{p}
M5	$k_{CGP} = k_p$	$e_{CGP} = (1 - (e_p^2 - 1) W^{1/3})^{1/2}$	$\mu_{CGP} = \mu_{p}$

M1	Sakano et al.,2000, Jan.J.Multi.Fow.; Patankar and Joseph, 2001, Int. J. Multi. Flow	
M2	Sakai et al. 2009, CES	
M3	Benyahia and Galvin, 2010, I&ECR	
M4	Radl et al. 2011, 8 th Conf. CFD in Oil &Gas Thakur et al., 2016 Pow.Tec.	
M5 <	Lu et al. 2014. CES	

6

CGHS: From DEM to HS

• Soft-sphere

J: *impulse*

CGHS: Eliminating unphysical overlaps in HS

Lu, L.; Li, T.; Benyahia, S., 2017. An efficient and reliable predictive method for fluidized bed simulation. AIChE Journal, DOI: 10.1002/aic.15832 NATIONAL ENERGY

Outline

- 1. Overview of Discrete Particle Models
- 2. Coarse Grained Hard Sphere (CGHS)
- 3. Verification and Validation of CGHS
- 4. Simulation of an industrial FCC regenerator using CGHS
- 5. Concluding remarks

V&V: TDHS in small bubbling fluidized bed

Lu, L.; Li, T.; Benyahia, S., 2017. An efficient and reliable predictive method for fluidized bed simulation. AIChE Journal, DOI: 10.1002/aic.15832 NATIONAL

V&V: Verification of CGHS in a virtual bubbling fluidized bed

CPU time for solids phase

(a) Height = 0.05 m

Thousand-Fold Speedup of Discrete-Particle-Based Computer-Aided Reactor Design and Scale-up. 2017 Ligiang Lu and Sofiane Benyahia. TechConnect 2017, Washington D.C. U.S.

V&V of CGHS: Validation in large circulating fluidized bed

500 frames/sec

Shaffer & Gopalan, PIV

V&V of CGHS: Validation in large circulating fluidized bed

0.8

0.8

1

0.4

0.4

r/R (-)

r/R (-)

0.6

Experiment (FO)

0.6

CGHS-W1000 -----

U.S. DEPARTMENT OF

13

1

Improvements in radial profiles of solids vertical velocity and flux at height 13.33 m from case W1000 (e = 0.5) to case W1000e (e = 0.14).

• Collision parameters

- Benyahia S, Galvin JE. 2010, Estimation of Numerical Errors Related to Some Basic Assumptions in Discrete Particle Methods. Ind. Eng. Chem. Res. 49(21):10588-10605.
- Lu, L., Xu, J., Ge, W., Yue, Y., Liu, X., Li, J., 2014. EMMS-based discrete particle method (EMMS–DPM) for simulation of gas–solid flows. Chemical Engineering Science 120, 67-87.
- Chemical reactions
 - Lu, L., Yoo, K., Benyahia, S., 2016. Coarse-Grained-Particle Method for Simulation of Liquid–Solids Reacting Flows. Industrial & Engineering Chemistry Research 55, 10477-10491.
- Heat transfer
 - Lu, L.; Morris, A.; Li, T.; Benyahia, S., 2017. Extension of a coarse grained particle method to simulate heat transfer in fluidized beds. Int. J. Heat Mass Transfer, 111, 723-735.
- Drag corrections/CFD grid/parcel size
 - Lu, L.; Konan, A.; Benyahia, S., 2017. Influence of grid resolution, parcel size and drag models on bubbling fluidized bed simulation. Chemical Engineering Journal, 326, 627-639.

Outline

- 1. Overview of Discrete Particle Models
- 2. Coarse Grained Hard Sphere (CGHS)
- 3. Verification and Validation of CGHS
- 4. Simulation of an industrial FCC regenerator using CGHS
- 5. Concluding remarks

FCC Regenerator: Geometry and boundary conditions

U.S. DEPARTMENT OF

Boundary conditions

- erm	Simulation Value	Industrial data
Bottom inlet air velocity, m/s	0.495	NA (not available)
Bottom inlet air pressure, kPa	160	160
Bottom inlet air temperature, K	573	573
Bottom inlet air oxygen mass fraction	0.2320	0.2320
Bottom inlet air carbon dioxide mass fraction	0.0005	0.0005
Bottom inlet air carbon monoxide mass fraction	0.0000	0.0000
Bottom inlet air water vapor mass fraction	0.0000	0.0000
Bottom inlet air nitrogen mass fraction	0.7675	0.7675
op outlet pressure, kPa	140	140
pent catalyst inlet air velocity, m/s	0.5	NA (not available)
ipent catalyst inlet air pressure, kPa	140	NA
ipent catalyst inlet air temperature, K	735	NA
pent catalyst inlet air oxygen mass fraction	0.0212	NA
pent catalyst inlet air carbon dioxide mass fraction	0.2617	NA
pent catalyst inlet air carbon monoxide mass fraction	0.0093	NA
pent catalyst inlet air water vapor mass fraction	0.0416	NA
pent catalyst inlet air nitrogen mass fraction	0.6662	NA
ipent catalyst mass flow rate, kg/s	22.7	22.7
pent catalyst carbon mass fraction	0.00900	0.00900
pent catalyst hydrogen mass fraction	0.00072	0.00072
pent catalyst Temperature, K	753	753
ipent catalyst inlet voidage	0.9	NA
Regenerated catalyst outlet pressure, kPa	140	NA
Regenerated catalyst outlet solid mass flow rate, kg/s	22.7	22.7
Valls Momentum transfer	Non slip	NA
Valls Heat transfer	Adiabatic	NA
Valls Species transfer	Zero flux	NA

Numerical parameters

Drag corrections

$$\beta_{\text{Gao}} = \begin{cases} 150 \frac{(1-\varepsilon_{\text{f}})^{2} \mu_{\text{f}}}{\varepsilon_{\text{f}} d_{p^{*}}^{2}} + 1.75 \frac{(1-\varepsilon_{\text{f}}) \rho_{\text{f}} \left| \mathbf{v}_{\text{f}} - \mathbf{v}_{p} \right|}{d_{p^{*}}}, \varepsilon_{\text{f}} \leq 0.800 \\ \\ \frac{5}{72} \frac{\varepsilon_{\text{f}} (1-\varepsilon_{\text{f}}) \rho_{\text{f}} \left| \mathbf{v}_{\text{f}} - \mathbf{v}_{p} \right|}{d_{p^{*}} (1-\varepsilon_{\text{f}})^{0.293}} C_{\text{D}^{*}}, & 0.800 < \varepsilon_{\text{f}} \leq 0.933 \\ \\ \frac{3}{4} \frac{\varepsilon_{\text{f}} (1-\varepsilon_{\text{f}}) \rho_{\text{f}} \left| \mathbf{v}_{\text{f}} - \mathbf{v}_{p} \right|}{d_{p}} C_{\text{D}0} \varepsilon_{\text{f}}^{-2.65}, & 0.933 < \varepsilon_{\text{f}} \leq 0.990 \\ \\ \frac{3}{4} \frac{\varepsilon_{\text{f}} (1-\varepsilon_{\text{f}}) \rho_{\text{f}} \left| \mathbf{v}_{\text{f}} - \mathbf{v}_{p} \right|}{d_{p}} C_{\text{D}0}, & 0.990 < \varepsilon_{\text{f}} \leq 1.000 \end{cases}$$

Chemical reactions and Heat transfer

$$\begin{aligned} \mathrm{CH}_{12n} + (\frac{r+0.5}{r+1} + 3n)\mathrm{O}_2 &\to \frac{r}{r+1}\mathrm{CO}_2 + \frac{1}{r+1}\mathrm{CO} + 6n\mathrm{H}_2\mathrm{O} \\ \mathrm{C} + \mathrm{O}_2 &\to \mathrm{CO}_2, Q = -393.51 kJ \ / \ mol \end{aligned}$$
$$\begin{aligned} \mathrm{C} + \frac{1}{2}\mathrm{O}_2 &\to \mathrm{CO}, Q = -110.54 kJ \ / \ mol \end{aligned}$$
$$\begin{aligned} \mathrm{2H} + \frac{1}{2}\mathrm{O}_2 &\to \mathrm{H2O} \ , Q = -241.82 kJ \ / \ mol \end{aligned}$$

Gao, J., Lan, X., Fan, Y., Chang, J., Wang, G., Lu, C., Xu, C., 2009. CFD modeling and validation of the turbulent fluidized bed of FCC particles. AIChE Journal 55, 1680-1694.

Chang, J., Wang, G., Lan, X., Gao, J., Zhang, K., 2013. Computational Investigation of a Turbulent Fluidized-bed FCC Regenerator. Industrial & Engineering Chemistry Research 52, 4000-4010.

Figure 1. Comparison of predicted (averaged from 500 s to 1000 s) bed densities with industrial

data

20

FCC Regenerator: Temperature

FCC Regenerator: Species

NATIONAL ENERGY TECHNOLOGY LABORATORY

Concluding Remarks

- Simulation of large-scale reactors can be achieved in just few days of wall-clock time using minimal computer resources using CGHS
- The computation accuracy can be improved by reducing time step and parcel size

All these applications and more details of this method will be summarized in a book chapter in **Advances in Chemical Engineering**

Rare-Earth-Element Leaching Reactor

Ongoing Researches

NATIONAL ENERGY TECHNOLOGY LABORATORY

Extension to polydisperse system: FCC particles as an example

Uncertainty Quantifications: Homogeneous cooling as an example

Acknowledgement

NATIONAL VERGY

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 1 any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsemen recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

