Linear Solver Performance Analysis of MFiX integrated with a Next Generation Computational Framework

V. Kotteda, PostDoc, V. **Kumar**, Associate Professor, Mechanical A Rodriguez, UG RA, A Schiaffino, Grad. Student, Mechanical, A Chattopadhyay, Grad. Student, Computational Science The University of Texas at El Paso

W. Spotz, Senior Research Staff, Sandia National Labs - NM

NETL Workshop on Multiphase Flow Science August 8-10, 2017 Morgantown, WV

Outline

- Goals and Objectives
- Technical approach
 - What is Trilinos?
 - Scalability and Portability
 - Sandia's Next-Gen Computational Framework MPI-X, UQ, etc
 - Trilinos-MFiX Framework
- Results & Discussion
- Concluding remarks
- Future work

Goal and Objectives

The technical goal of this project is to develop, validate and implement **advanced linear solvers** to replace **MFiX's existing linear solvers**. This goal will be achieved by integrating **Trilinos**, a publicly available open-source linear equation solver library developed by **Sandia** National Laboratory. The project will **demonstrate scalability** of the Trilinos- MFIX interface on various high-performance computing (HPC) facilities including the ones funded by the Department of Energy (DOE).

The expected results of the project will be **reduction of computational time** when solving complex gas-solid flow and reaction problems in MFIX, and reduction in time and cost of adding new algorithms and physics based models into MFIX

- **Objectives**
 - Create a framework to integrate MFIX with Trilinos linear solver packages
 - Validate MFIX suites of problems on HPC systems with and without GPU acceleration
 - Evaluate the performance

MFiX: Challenges and Opportunities

MFiX (developed by NETL)

- Model multiphase physics
- Widely used by the fossil fuel reactor communities and beyond
- can significantly reduce time & cost to design a reactor

$$\varepsilon_{g} + \sum_{m=1}^{M} \varepsilon_{sm} = 1$$

$$\frac{\partial}{\partial t} (\varepsilon_{g} \rho_{g} \vec{U}_{g}) + \nabla .(\varepsilon_{g} \rho_{g} \vec{U}_{g}) = R_{g}$$

$$\frac{\partial}{\partial t} (\varepsilon_{g} \rho_{g} \vec{U}_{g}) + \nabla .(\varepsilon_{g} \rho_{g} \vec{U}_{g} \vec{U}_{g}) = -\varepsilon_{g} \nabla P_{g} + \nabla .\tau_{g} - \sum_{m=1}^{M} I_{gs_{m}} + \varepsilon_{g} \rho_{g} \vec{g}$$

$$\varepsilon_{g} \rho_{g} C_{pg} \left(\frac{\partial T_{g}}{\partial t} + \vec{U}_{g} . \nabla T_{g} \right) = \nabla \vec{q}_{g} - \sum_{m=1}^{M} H_{gs_{m}} - \Delta H_{rg} + H_{wall}(T_{wall} - T_{g})$$

However

- Computational expense for most practical applications can make it impractical
- Limited software capabilities
 - Linear solver, MPI-X, UQ, etc.
- Can result in poor convergence especially in complex non-linear problems

But, could be made more practical if we could significantly reduce time-to-solution by

- Effectively exploiting HPC systems (massively parallel computers, GPUs, multithreading..)
- Leveraging state-of-the-art preconditions and linear solver libraries
- Providing a long-term portable and scalable software development framework

Supercomputers

Processor 2

Processor 1

What is Trilinos?

- Object-oriented software framework
 for...
- Solving big complex science & engineering problems
- More like LEGO[™] bricks than Matlab[™]
 - **Trilinos** provides the state-of-the-art preconditions and **linear solver** libraries
 - demonstrate scalability on current HPC systems
 - illustrate plans for **continued maintenance**
 - include support for new hardware technologies

aboratories

Next-generation Computational Framework

	physics	 High fidelity modeling and simulation is a critical enabling technology to understand physical systems Exascale computing provides potential for high fidelity solutions to complex multiscale multiphysics problems requires exploiting homogeneous or heterogeneous mixtures CPUs and specialized processing units (modern day supercomputers!) requires next generation of computational framework and models that are portable and scalable to 100,000s of processors 			
	L(u)=f Math. model $L_h(u_h)=f_h$ Numerical model $u_h=L_h^{-1} \cdot f_h$ Algorithms	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>			
Ū	computation	 Beyond a "solvers" framework Natural expansion of capabilities to satisfy application and research needs Discretization methods, Automatic Differentiation, Mortar methods, 			

Laboratories

Trilinos Package Categories

Trilinos Package Advancement

Category	1 st Generation	2 nd Generation	3 rd Gen
Linear Algebra Services	Epetra , EpetraExt, Komplex	Tpetra , Xpetra, Domi, RTOp, Thyra	Tpetra , Xpetra
Tools	Teuchos, Triutils, Galeri, Optika, Trios	Teuchos, Sacado, Trios	
Direct Linear Solvers	Amesos, Pliris	Amesos2	
Iterative Linear Solvers	AztecOO	Belos, Stratimikos	Belos
Preconditioners	IFPACK, ML	IFPACK2, MueLu, ShyLU	IFPACK2, MueLu
Nonlinear Solvers	NOX, LOCA	NOX, LOCA	
Eigensolvers	Anasazi	Anasazi	
Optimization & Analysis	МООСНО	MOOCHO, OptiPack, Phalanx, Piro, ROL	
Meshing & Load Balance	STK, Zoltan, Isorropia, Mesquite, Moertel	STK, Zoltan2, Pamgen	
Discretizations	Intrepid, Shards, Rythmos	Intrepid, Shards, Tempus	
Performance Portability			Kokkos

Trilinos + MFiX

Using Trilinos Linear Solver with MFiX

A language independent interface to integrate legacy codes

UP

2D bubbling fluidized bed

Properties

particle diameter= 0.04 cmparticle density $= 2.0 \text{ g/cm}^3$ Restitution co-efficient= 0.80Angle of internal friction= 30Fluid viscosity= 0.00018 g/cm sFluid density $= 0.0012 \text{ g/cm}^3$

Boundary conditions

Inlet: constant mass inflow 124.6 cm/s for 4.3 < x < 5.7; 25.9cm/s for 0 < x < 4.3, 5.7 < x < 10Sidewalls: slip condition Outlet : pressure outflow condition (p = 0)

Dimensions: 10cm X 100cm

MFiX 1.00 0.75 0.50 025

MFiX-Trilinos

Flow in a fluidized bed (3D)

aboratories

Flow in a fluidized bed

PIC

Speedup - Trilinos MFiX vs MFiX

3D Bubbling flow Problem

Case 1: Mesh Size = 10M Case 2: Mesh size = 200M

Computers:

Stampede:Texas Advanced Computing Center (TACC)Bridges:Pittsburgh Supercomputing Center (PSC)Comet:San Diego Supercomputer Center (SDSC)

Various computer architectures used for the performance analysis study

	Stampede (AS)	Comet (AC)	Bridges (AB)
Model (Intel Xeon)	E5-2680 2.7GHz	E5-2695 2.5GHz	E5-2695 2.30 GHz
Cores per socket	8	12	14
Sockets	2	2	2
L1 cache (KB)	32	32	32
L2 cache (KB)	256	256	256
L3 cache (KB)	20480	30720	35840
RAM (GB)	32	128	130

Performance of MFiX-Trilinos

Linear iterative solvers

Trilinos

Solvers: BiCGStab, TFQMR, Pseudoblock TFQMR GMRES, Flexible GMRES, Recycling GMRES, Hybrid GMRES

Packages: Tpetra (obj), Belos (solver), MueLu (pre)

Mesh M1 (10M)

Mesh M2 (200M)

First and second generation solver stacks

First Generation

5.0

Iterative Solvers: BiCGStab, GMRES Packages: Epetra (obj), Aztec(solver), ML PC: Smoothed Aggregation

Second generation

Iterative Solvers: BiCGStab, GMRES Packages: Tpetra (obj), Belos (solver), MueLu PC: Smoothed Aggregation

Concluding remarks and future work

- Presented MFiX linear solver integration framework with Trilinos's Linear solver
- Analyzed solver performance for various problem sizes and HPC systems -- a speed of ~5 times was noticed

Future

- Portability Kokkos
- Efficient memory and data transfer management

Thank you!

Q&A ?

Acknowledgments: DOE/NETL – UCR, XSEDE, Sandia, ME & Computational Depts

