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> Introduction
> Fractures
> Shearing

» Experimental Tests Rock Fractures at NETL in Morgantown
> Preparing the sample
» Mechanical shearing
» Computed tomography (CT) scan
> Permeability measurement

» Numerical Models
> Full Navier-Stokes simulations
> Modified Local Cubic Law (MLCL) method
» Improved Cubic Law

> Results and Conclusions
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Shale gas extraction

Well—

Gas flows out
Water table
Water, sand
and chemucais

Gas flows out

Water vapor from

X Fem™
S . cooling facility

Fluid is pumped to the|
Fluid is recycled to the surface through
reservoir through the injection ———— F production wells
well to complete the loop

Injected fiuid enhances the /
transmissivity of the rock and

maintains the reservoir fluid

Hammack, R., Harbert, W., Sharma, S., Stewart, B., Capo, R., Wall, A.: An evaluation of fracture grow
Laboratory: NETL-TRS-3-2014. https://www.netl.doe.gov/File%20Library/Research/onsite%20resea

Fluid flows through the rock
along permeable pathways,
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» Sample
» Marcellus shale
» Glant shale resource of natural gas
> 3.8 (cm) diameter, 3.8 (cm) length
> No natural fractures
» Mechanically fractured
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ﬂ Shearing Apparatus
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» Modified pistons within a Hassler core holder to shear fractured rocks in
discrete steps

» Total displacement of 4 cycles: 3.2 (mm)

~ Industrial computed tomography (CT) scanning with 26.8(um) resolution |

» Obtain the geometry of the fracture




» Water fluid was injected with different flow rates (0-10 mL/min)

Caonfirng
» Pressure drops were measured (0-2 MPa) Pump

Confining Fluid (H,0)

Confining Fluid (H,0)

Schematic of current shearing apparatus with core >
Cross-sectional view
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» Geometry

» Full Map
» Original resolution

» Average Map
» Reduced resolution
» The small scale features of the rough fracture
> Need less computational time
» Effect of scan resolution
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» ANSYS-Fluent Software
» Solve Conservation of Mass and Momentum Equations

V-u=20
pu-Vu = —VP + ul?u + pg

» Modified Local Cubic Law (MLCL) Model

» Collection of interconnected small parallel plates
» Laminar creeping flow
» Gradual variation

> Reynolds Equation: 0 = —VP + uV%u

> 0= —Txi,j(Pi+1,j - Pi,i) + TXi—i]( ij — Pi- 1]) TZi,j(Pi»i+1 11) + 1 1( 1j — - 1)

h3Az h3Ax
> Ty =
= Px T7nx 12Ax '’ = Pz 134, 12Az
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> Cubic Law

12 uL.
> Ap = “3

» Improved Cubic Law

2
» Roughness hgq = hy, (1 +9 ("apert) )

hm
1
> Inertia and undulation heq = hy, (1 B O'C;pert NG iwpe \/—)
» Equivalent aperture height
1 1
o\ -2
> heq = h (1 +9 (JCLP@”) ) 6 (1 Uc;lpert \/Uilope \/—)
12 uL
> Ap = Wheg?
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» A sheared Marcellus shale fracture was studied experimentally.
» Sheared at different steps.
» Permeability was measured at different flow rates.
» The fracture was CT scanned at a high-resolution of 26.8 pm.
» Geometry of the fractures was captures at each step.

» Low-resolution representations of the CT scans were created at 268 um (average map).

» The fracture flows were studied numerically for both the average and full maps.
» ANSYS-Fluent Software.
» The MLCL method.
» The Improved Cubic Law.
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» Shearing increased the average aperture.

» Pressure drops decreased.

» Flow velocities decreased.

» Smaller pressure drops for the average compared to those of the full map.
» Significant effects of small scale surface roughness.

» Importance effects of the resolution of the CT scan.

» Agreement between the numerical predictions.
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Local Cubic Law:

Grid Block Transition:

_ (hiz'D) ) APy,
(A2-p) 61

Stokes Tapered Plate Correction:

12 =75 (612) 812

hy

h3 . 2 h% . h% 3(tan(61‘2) - 91‘2)
12— hl + hz tan3(91‘2)

This method strongly tends towards the
smaller aperture

. Brush, Thomson. April 3, 2003. Fluid Flow in synthetic rough-walled fractures: Navier-Stokes, Stokes and local cubic law simulations.
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» CT scanning relies on capturing a large number of 2D x-ray ' - .

» Bulk matrix of rock was generated

» Fracture geometry was isolated via imageJ
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