Interactions of Particles with Flow Structures in Turbulent Channel Flows

Amir A. Mofakham and Goodarz Ahmadi
Department of Mechanical and Aeronautical Engineering
Clarkson University, Potsdam, NY

John McLaughlin
Department of Chemical and Biomolecular Engineering
Clarkson University, Potsdam, NY

August 6, 2019
Outline

- Flow Simulations (DNS)
 - Geometry and boundary condition
 - Governing equations
- Particle Simulations
 - Governing equations
- Results
 - Evolution of near wall coherent structure
 - Time and space evolutions
- Conclusions
Methodology: Fluid Flow

Direct Numerical Simulation (DNS)

❖ Pseudo-Spectral code

❖ Solves the Navier-Stokes equations

\[
\frac{\partial \mathbf{u}_f}{\partial t} + \mathbf{u}_f \cdot \nabla \mathbf{u}_f = -\frac{1}{\rho_f} \nabla P + \frac{1}{\text{Re}_L} \nabla^2 \mathbf{u}_f
\]

\[
\nabla \cdot \mathbf{u}_f = 0
\]

❖ Streamwise and spanwise velocities are expanded by Fourier series

❖ The normalized velocities are expanded by Chebyshev series
Methodology: Fluid Flow

Boundary Conditions:
\[
\begin{align*}
 u^+ &= 0, \quad y = \pm H^+/2 \\
 u^+(x^+ + \lambda^+_x, y^+, z^+ + \lambda^+_z, t^+) &= u^+(x^+, y^+, z^+, t^+),
\end{align*}
\]

Gridding
\[
\begin{align*}
 nx &= 128, ny = 129, nz = 64 \\
 &1,056,768\text{ cells}
\end{align*}
\]

Chebyshev series
\[
y_i^+ = \frac{H^+}{2} \cos\left(\frac{\pi i}{M}\right), \quad 0 \leq i \leq M
\]

\[
\begin{align*}
 \lambda^+_x &= 1260 \\
 \lambda^+_z &= 630 \\
 \frac{H^+}{2} &= 125 - 590 \\
 y \quad \text{Upper Wall} \\
 z \quad \text{Lower Wall} \\
 x \quad \text{Mean Flow}
\end{align*}
\]
Eulerian-Lagrangian Method

Wall units:
\[
X^+ = \frac{X u^*}{\nu}
\]
\[
t^+ = \frac{tu^2}{\nu}
\]
\[
u^+ = \frac{u}{u^*}
\]

\[
\frac{d u_p^+}{dt^+} = C_D F_D^+ + F_l^+ + n^+(t^+)
\]

Drag force Lift Force Brownian motion

Particle equation of motion:
\[
\frac{dx_p^+}{dt^+} = u_p^+
\]

Drag coefficient:
\[
CD = \begin{cases}
1 + 0.1875Re_p & \text{Re} \leq 0.01 \\
1 + 0.1315Re_p^{0.82+0.0217 \ln(Re_p)} & 0.01 \leq Re_p \leq 20
\end{cases}
\]
Coherent Wall Vortices

- Counter rotating vertices
- Elongated along the streamwise direction
- 100 wall units distance spacing
- Burst and inrush events
Normal Velocity and Vorticity Contours

At a Cross Section

Along the channel

Time Variations

Vorticity Contours
Velocity Contours on Planes Parallel to Walls

Time Variations

- **U Velocity**
- **V Velocity**
- **W Velocity**
Concentration Profiles

\[d_p = 10 \text{ nm} \]

\[d_p = 20 \text{ \(\mu\)m} \]
Velocity Profiles

- Fluid
- • dp=80 μm
- • dp=50 μm
- • dp=1 μm
Streamwise Direction

Streamwise Direction

Space Variations

\[dp = 60 \, \mu m \]

\[dp = 30 \, \mu m \]

\[dp = 1 \, \mu m \]

\[dp = 10 \, \mu m \]

\[dp = 60 \, \mu m \]
Preferential Concentration of 20 µm particles

Normalwise direction

Streamwise direction

Spanwise direction

Space Variations
X-Velocity Contours with 30 µm particles

Normalwise direction

Spanwise direction
Y-Velocity Contours with 30 µm Particles

Normalwise direction

Spanwise direction
\(\tau_p^+ = 10 \)
$\frac{1}{p^+} = 10$
Mean Flow Direction

Deposition Pattern

\[d = 25 \mu m \]
Pattern of Deposition on the Lower Wall

Dp=80 µm

Dp=60 µm
Pattern of Deposition on the Lower Wall

\[D_p = 30 \mu m \]

\[D_p = 10 \text{ nm} \]
Iso-Q & Iso-Vorticity Contours
Conclusions

• The coherent near-wall turbulent structures were visualized.
• The turbophoresis effects on particle concentration and velocity profiles were observed.
• For inertial particles with $\tau^+ = 2 - 60$, the turbulence near-wall eddies control the near-wall preferential concentration and the particle deposition process.
• For larger or smaller particles, the preferential concentration patterns become smeared.
Questions