Clarkson University

Interactions of Particles with Flow Structures in Turbulent Channel Flows

Amir A. Mofakham and Goodarz Ahmadi

Department of Mechanical and Aeronautical Engineering Clarkson University, Potsdam, NY

John McLaughlin

Department of Chemical and Biomolecular Engineering Clarkson University, Potsdam, NY

August 6, 2019

Outline

> Flow Simulations (DNS)

Geometry and boundary condition

Governing equations

Particle Simulations

Governing equations

> Results

Evolution of near wall coherent structure

Time and space evolutions

Conclusions

Direct Numerical Simulation (DNS)

- ✤Pseudo-Spectral code
- Solves the Navier-Stokes equations

$$\frac{\partial \mathbf{u}_f}{\partial t} + \mathbf{u}_f \cdot \nabla \mathbf{u}_f = -\frac{1}{\rho_f} \nabla P + \frac{1}{\text{Re}_L} \nabla^2 \mathbf{u}_f$$
$$\nabla \cdot \mathbf{u}_f = 0$$

Streamwise and spanwise velocities are expanded by Fourier series

The normalized velocities are expanded by Chebyshev series

Methodology: Fluid Flow

Uni

0.01

Wallu

 \rightarrow

Wall units:
$$\overrightarrow{X^{+}} = \frac{\overrightarrow{X}u^{*}}{\sqrt[4]{du_{p}^{+}}}$$

 $t^{+} = \frac{tu^{*^{2}}}{v}$ $\overrightarrow{u^{+}} = \frac{\overrightarrow{u}}{u^{*}}$
Particle equation of motion:
 $d\overrightarrow{x_{p}^{+}} = C_{D}F_{D}^{+} + F_{l}^{+} + \overrightarrow{n^{+}}(t^{+})$
Drag force Lift Force Brownian motion
 $d\overrightarrow{x_{p}^{+}} = \overrightarrow{u_{p}^{+}}$
Drag coefficient: $CD = \begin{cases} 1+0.1875Re_{p} & Re \leq 0.01\\ 1+0.1315Re_{p}^{0.82+0.0217ln(Re_{p})} & 0.01 \leq Re_{p} \leq 20 \end{cases}$

Coherent Wall Vortices

- Counter rotating vertices
- Elongated along the streamwise direction
- 100 wall units distance spacing
- Burst and inrush events

Normal Velocity and Vorticity Contours

At a Cross Section

Along the channel

Time Variations

Vorticity Contours

Velocity Contours on Planes Parallel to Walls

Y+=5.38

\$ 300

≥ 300

300

Time Variations

U Velocity

U

V Velocity

W Velocity

Concentration Profiles

 $d_p = 10 nm$

University

 $d_p = 20 \ \mu m$

Velocity Profiles

--Fluid - ·dp=80 μm - ·dp=50 μm - ·dp=1 μm

U

n i

t y

s

Streamwise Direction

rsity

n

Preferential Concentration of 20 µm particles

Normalwise direction

Streamwise direction

Spanwise direction

Space Variations

X-Velocity Contours with 30 µm particles

Y-Velocity Contours with 30 µm Particles

Deposition Pattern

Pattern of Deposition on the Lower Wall

Uni

Pattern of Deposition on the Lower Wall

Clarkson University

Dp=30 μm

Dp=10 nm

Iso-Q & Iso-Vorticity Contours

ty

Conclusions

- The **coherent near-wall turbulent structures** were visualized.
- The **turbophoresis effects** on particle concentration and velocity profiles were observed.
- For inertial particles with $\tau^+ = 2 60$, the turbulence near-wall eddies control the near-wall **preferential concentration** and the particle **deposition process**.
- For larger or smaller particles, the preferential concentration patterns become smeared.

