Homogeneously sheared particle-laden turbulence in two-way coupled Eulerian-Eulerian and Eulerian-Lagrangian simulations

M. Houssem Kasbaoui

School for Energineering of Matter, Tranpsort & Energy Mechanical & Aerospace Engineering

NETL Multiphase Workshop 2019

Complex and Multi-scale Collective Dynamics

Particles form clusters

Macro-scale

- ► L~ O(1 m)
- Cluster-driven flow
- Cluster-wall interaction

Modulation of the Suspending Turbulence

RIZONA STATE

- Particles exert drag on the gas and enhance local dissipation.
- Vortex shedding by clusters.

Dispersed particles may drastically change the structure of turbulence

Motivation

Elghobashi & Truesdell, PoF, 1993 Kasbaoui et al. IFM. 2018 **NETL 2019**

3 / 28

Semi-Dilute Aerosols

The semi-dilute aerosols regime

Preferential Concentration

- Particles preferentially sample strain regions of the flow over vortical regions.
- Preferential concentration depends on particle inertia.

Questions:

- 1. How do particles modulate the carrier phase?
- 2. How can we simulate two-coupled particle laden-flows in a **predictive** and **computationally efficient** way?

Homogeneously Sheared Turbulence

- Allows to study the modulation of sheared turbulence by particles without contamination from numerical turbulent forcing methods or bounding walls.
- Mimics high shear regions of more general flows.
- ► Single-phase HST well understood

RIZONA STATE

Preferential Concentration

Simulations of particle-laden HST rely on:

- 1. Implementation of a homogeneous shearing algorithm.
- 2. Implementation of particle-phase models.
 - Eulerian–Eulerian formalism
 - Eulerian–Lagrangian formalism

Shear Decomposition & Shear-Periodic BC

Solve for fluctuations:

 $\mathsf{U} = \Gamma y \mathsf{e}_x + \mathsf{u}$

Navier-Stokes equations expressed for fluctuations:

$$\nabla \cdot \mathbf{u} = \mathbf{0}$$

$$\rho_f \frac{\partial \mathbf{u}}{\partial t} + \rho_f \mathbf{u} \cdot \nabla \mathbf{u} + \underbrace{\rho_f \Gamma y \frac{\partial \mathbf{u}}{\partial x}}_{\text{distortion}} = -\nabla p + \mu_f \nabla^2 \mathbf{U} + \rho_f \mathbf{g} - \mathbf{F} - \underbrace{\rho_f \Gamma u_y \mathbf{e}_x}_{\text{convection of shear}}$$

With shear-periodic boundary conditions

$$f(x, L_y, z) = f(x - \Gamma L_y t, 0, z)$$

Kasbaoui et al, JFM, 2017

Numerical methods

Example: Homogeneously Sheared Suspension

In the semi-dilute regime, clusters form according to the "Route-To-Clustering":

- 1. Shear-activated Preferential Concentration instability
- 2. Particle-Trajectory crossing instability
- 3. Rayleigh Taylor instability

Kasbaoui et al, JFM, 2019

9 / 28

NETL 2019

Eulerian-Lagrangian Particle Solver

Integrate the equation of motion of every particle "i"

$$\frac{d\mathbf{x}_{p}^{i}}{dt} = \mathbf{v}_{p}^{i}$$
$$\frac{d\mathbf{v}_{p}^{i}}{dt} = \underbrace{\frac{\mathbf{u}(\mathbf{x}_{p}^{i}, t) - \mathbf{v}_{p}^{i}}{\mathbf{\tau}_{p}}}_{\text{Stokes drag}} + \mathbf{g}$$

- Simulating a few integral length scales in the semi-dilute regime, requires the tracking of $O(10^8)$ to $O(10^{10})$ particles.
- ► Up to 1.7 10⁹ particles tracked in present simulations.

Capecelatro et al, JCP, 2013 Ireland et al, JCP, 2017

10 / 28

NETL 2019

Numerical methods

Euler-Euler Particle Solver: Kinetic Approach

Start from Boltzman Equation for population balance

$$\frac{\partial f}{\partial t} + \mathbf{c} \cdot \nabla_{\mathbf{x}} f + \nabla_{\mathbf{v}} \cdot \left(f \frac{\mathsf{F}}{m_p} \right) = \mathbf{0}$$

Solve for moments of the number density PDF

$$\begin{split} \phi(\mathsf{x}) &= \iiint fd\mathsf{c} \quad \text{number density} \\ (\phi\mathsf{v})(\mathsf{x}) &= \iiint \mathsf{c} \mathsf{f} \mathsf{d} \mathsf{c} \quad \text{particle momentum} \\ \mathsf{E}(\mathsf{x}) &= \iiint \mathsf{c} \mathsf{c} \mathsf{f} \mathsf{d} \mathsf{c} \quad \text{particle energy tensor} \\ \mathsf{Q}(\mathsf{x}) &= \iiint \mathsf{c} \mathsf{c} \mathsf{c} \mathsf{f} \mathsf{d} \mathsf{c} \quad \text{particle heat flux tensor} \\ & \cdots \end{split}$$

Williams, Phys. Fluids, 1958

11 / 28

NETL 2019

Moments Transport

Conservation of number density (0th order):

$$\frac{\partial \rho_{\boldsymbol{p}} \phi}{\partial t} + \nabla \cdot \left(\rho_{\boldsymbol{p}} \phi \mathsf{v} \right) = 0$$

Conservation of momentum (1st order):

$$\frac{\partial \left(\rho_{P}\phi \mathsf{v}\right)}{\partial t} + \nabla \cdot \mathsf{E} \quad = \quad \rho_{P}\phi\mathsf{g} + \frac{\rho_{P}\phi\mathsf{u} - (\rho_{P}\phi\mathsf{v})}{\tau_{P}}$$

Conservation of energy (2nd order):

ARIZONA STATE

$$\frac{\partial \mathsf{E}}{\partial t} + \underbrace{\nabla \cdot \mathsf{Q}}_{\text{requires closure}} = \mathsf{g}(\rho_{p}\phi\mathsf{v}) + (\rho_{p}\phi\mathsf{v})\mathsf{g} + \frac{(\rho_{p}\phi\mathsf{v})\mathsf{u} + \mathsf{u}(\rho_{p}\phi\mathsf{v}) - 2\mathsf{E}}{\tau_{p}}$$

Patel et al, AiChE J., 2017 Kasbaoui et al, JFM, 2019

12 / 28

NETL 2019

Numerical methods

Presumed PDF Closure

Assuming that the particle velocity distribution follows an Anisotropic Maxewellian/Gaussian:

Captures particle trajectory crossing

Collapses onto a monokinetic distribution

$$f \rightarrow \phi \delta(\mathbf{c} - \mathbf{u}_p)$$

Collapses onto a Maxwellian distribution

$$f \rightarrow \frac{\phi}{(2\pi T)^{2/3}} \exp(-\frac{(\mathsf{c} - \mathsf{u}_p)^2}{2})$$

Vié et al, Com. Comp. Phys., 2015Numerical methodsNETL 201913 / 28

Clustering and Particle Agitation

Configuration

Carrier gas: air Particles: 90 μ m or 50 μ m of density $\rho_p = 1200$ kg \cdot m⁻³

Parameter	d50L	d50H	d90L	d90H
$\langle \phi \rangle$	1.25×10 ⁻⁴	5.0×10^{-4}	1.25×10 ⁻⁴	5.0×10^{-4}
М	0.125	0.5	0.125	0.5
St_{η}	0.06	0.06	0.19	0.19
St_{Γ}	0.09	0.09	0.21	0.21
$ au_{m ho} g/u_\eta$	9.4	9.4	30.4	30.4
$Re_{\lambda,0}$	29	29	29	29
S*	27	27	27	27
N	0.327×10 ⁹	1.308×10 ⁹	0.438×10 ⁹	1.752×10 ⁹

► Simulations with flow solver NGA on a 512x256x256 grid.

• Both Eulerian–Eulerian and Eulerian–Lagrangian simulations conducted.

Case $(St_{\eta} = 0.06, M = 0.125)$

Case $(St_{\eta} = 0.06, M = 0.125)$

- TKE and dissipation rate unchanged.
- No significant turbulence modulation.

RIZONA STATE

Case $(St_{\eta} = 0.06, M = 0.125)$

- ▶ No change to the diagonal components of the anisotropic Reynolds stress tensor.
- No modification of the flow anisotropy.

Case $(St_{\eta} = 0.06, M = 0.5)$

Case $(St_{\eta} = 0.06, M = 0.5)$

• Increased growth rates of TKE and dissipation rate.

• The dispersed phase **enhances** turbulence.

Case $(St_{\eta} = 0.06, M = 0.5)$

- Lower b_{11} component \rightarrow vortical structures less elongated.
- ▶ Higher *b*₂₂ component (gravity direction) due to particle settling.

Case ($St_{\eta} = 0.19$, M = 0.125)

22 / 28

Case $(St_{\eta} = 0.19, M = 0.125)$

• Decreased growth rates of TKE and dissipation rate.

• The dispersed phase attenuates turbulence.

Case $(St_{\eta} = 0.19, M = 0.125)$

- ▶ Higher b₁₁ (streamwise) component → vortical structures more elongated in the streamwise direction.
- Lower b_{33} (spanwise) component \rightarrow turbulence **attenuation** in the **spanwise** direction.

Case $(St_{\eta} = 0.19, M = 0.5)$

25 / 28

Case $(St_{\eta} = 0.19, M = 0.5)$

• Weaker decrease of growth rates of TKE and dissipation rate.

• Less turbulence **attenuation** with increasing *M*.

Case $(St_{\eta} = 0.19, M = 0.5)$

- Significant increase in b_{22} (gravity direction).
- ► Higher mass loading leads to **more energy transfer** in the gravity direction, **reducing** the turbulence attenuation.

Conclusion

- ► Homogeneously sheared turbulence (HST): a **test-bed** for turbulence models
- The dispersed phase may **enhance** or **attenuate** turbulence.
 - No modulation for small Stokes number ($St_{\eta} = 0.06$) and small mass loading (M = 0.125).
 - **Turbulence enhancement** for small Stokes number ($St_{\eta} = 0.06$) and high mass loading (M = 0.5).
 - **Turbulence attenuation** for larger Stokes number ($St_{\eta} = 0.19$). The strongest attenuation is for the small mass loading (M = 0.125).
- Excellent agreement between **Eulerian-Eulerian** and **Eulerian-Lagrangian** simulations.
- Kinetic based Eulerian-Eulerian model with Anisotropic-Maxwellian/Gaussian closure verified in the semi-dilute regime.

