NETL 2019 Workshop On Multiphase Flow Science

Coal and biomass bubbling fluidized bed gasifier - design and operation

Ali Sivri¹ Cosmin Dumitrescu¹ Amoolya Lalsare² John Hu²

¹ Center for Alternative Fuels Engines and Emissions (CAFEE)
 Department of Mechanical & Aerospace Engineering, West Virginia University
 ² Department of Chemical Engineering, West Virginia University

rginiaUniversity.

Outline

- Motivation
- Objectives
- Experimental setup
- Material characteristics
- Results
- Conclusions
- Future work

Motivation

- Efficient use of conventional and alternative energy resources
- Bubbling fluidized bed gasifier (BFBG) can convert biomass and coal into value-added chemicals and gaseous fuels for transportation or electricity generation
- Understanding the parameters that affect the fluidization hydrodynamics
- Collect experimental data representative of optimum conditions and use it to develop numerical simulations

Objectives

- Design and manufacture a BFBG that will help MFIX code development
- Investigate parameters that affect fluidization hydrodynamics
- Investigate coal and biomass and coal gasification
 - Efficiency
 - Product composition
- Collect data for model development

Experimental setup - Cold flow visualization and measurements

Experimental setup – BFBG at high temperatures

Screw feeder

Particle geometry

- Particle size and sphericity distribution affects the efficiency and product gas composition
- Important for correct process simulation

Material Characteristics

Table 1. Material size and sphericity analysis

Material	Average of particle size (µm)	Average of Sphericity
Hardwood	432	0.564
Coal	361	0.847
Glass beads	279	0.933
Sand	368	0.863

Close-up of bed material geometry

Close-up of fuel material geometry

Results: Pressure drop across the bed - cold flow

WestVirginiaUniversity. Benjamir

Results: Pressure drop across the bed - cold flow

Results: Pressure drop across the bed - cold flow

WestVirginiaUniversity.

Results: Effect of temperature on ΔP across the distributor plate

estVirginiaUniversity.

- Operating temperature affects the pressure drop across the distributor plate
- Temperature will affect bubbling characteristics

Results: Pressure drop across the bed – hot gasifier

Results: Pressure drop across the bed – hot gasifier

Coal steam gasification – Product composition

Coal steam gasification – Product composition

Biomass gasification – product composition

 $H_2:CO = 0.5$

 Reverse water gas shift reaction affects product composition

VestVirginiaUniversity.

Conclusions

- Binary mixtures with lower voidage ratio and higher bulk densities improve fluidization
- Operating temperature also effects the pressure drop through the distributor plate
- Preliminary results of coal and coal gasification are promising

Future work

- Improve the feeding system (continuous)
- Improve the product gas sampling (continuous)
- Improve measurement (multiple locations)
- Improve temperature control

Acknowledgements

Thank you ? ?

BFBG experimental setup

BFBG experimental setup

Bubbling fluidized bed reactor system. P: Pressure sensor, T: Temperature sensor, 1: Nitrogen tank, 2: Compressed air tank, 3: Expansion tanks, 4: Bed reactor, 5: Furnace, 6: Feeding system gas flow line, 7: Feeding point, 8: Output gas line, 9: Gas sampling valve, 10: Bed reactor cooling gas line, 11: Bed reactor fluidization gas line.

Table 2. Material elemental analysis

Material	Moisture, (%)	Volatile, (%)	Ash, (%)	Nitrogen, (%)	Carbon, (%)	Hydrogen, (%)	Oxygen, (%)
Biomass (Hardwood)	7.16	75.65	0.32	0.9	45.25	4.65	49.2
Coal (Pittsburgh #8)	1.3	34	10.6	1.6	85.6	5.8	7

Objectives

- Design, build and operate a laboratory-scale bubbling fluidized bed gasifier (BFBG) using biomass (hardwood) and coal as feedstocks.
- Analyze the fluidization hydrodynamics of binary mixtures with biomass and coal as feedstocks by using a laboratory-scale BFBG cold-flow rig (CFR).
- Analyze the effect of temperature on fluidization hydrodynamics at actual experimental conditions up to 800 °C.
- Perform biomass and coal gasification operations in accordance with the data obtained from cold flow experiments and analyze the product gas compositions.
- Provide high quality data for NETL Multiphase Flow Group for modeling.

BFBG fluidization hydrodynamics analysis

Table 2. Material bulk density and voidage analysis

Material (Mixtures)	Bulk density (g/cc)	Voidage (%)
Glass beads + coal	1.61	35
Glass beads + hardwood	1.43	38
Sand + coal	1.56	41
Sand + hardwood	1.38	44

