2019 NETL Multiphase Flow Science Workshop

Microwave Doppler Sensing of

Particulate Flow in a Chemical Looping Reactor

August 6-8, 2019

M. Spencer^{1,2}, J. Charley^{1,2}, J. Stoffa^{1,2}, S. Bayham¹, D. Straub¹, B. Chorpening¹ August 6-8, 2019, Morgantown

¹National Energy Technology Laboratory, 3610 Collins Ferry Road, Morgantown, WV 26507, USA ²Leidos Research Support Team, 3610 Collins Ferry Road, Morgantown, WV 26507, USA

Solutions for Today | Options for Tomorrow

Transformational Technologies for New and Existing Plants Task 14. Sensors and Controls

NETL

• Objectives

- Develop innovative sensors to improve CLC system operations and reliability
- Support CLC experimental research with advanced diagnostics

Application: NETL Chemical Looping Reactor

Microwave Doppler

- Flow velocity determined from Doppler effect (frequency shift)
- Reflection magnitude related to density

ΔΤΙΟΝΔΙ

Single particle vs. flow of many particles

NATIONAL ENERGY TECHNOLOGY LABORATORY

- Compute Fourier power spectrum of demodulated signal
- Get frequency shift of reflected signal

steel ball 0.157" diameter falling 1.8 m, horn angle 42 degrees; 10 GHz

ilmenite falling 2.1 m, horn angle 52 degrees; 10 GHz

Many particles produce a frequency shift *distribution*

2nd Generation Design

2nd generation design moves pressure boundary away from flow passage, uses hollow stainless steel waveguide

1st Generation design suffered from multiple internal reflections and plating under CLR operating conditions

Redesigned High Temperature Antenna

- Bench test of electromagnetic performance with VNA.
- Bench testing with CL carrier materials

Drop tube distance to antenna, d = 0.406m

Velocity at antenna from acceleration due to gravity, $V = (2*g*d)^{1/2} = 2.822 \text{ m/s}$

Doppler frequency shift, df = 2*f*V/c*cos (theta) = 2*24.125E09*2.822/2.998E08*cos(45) = 321.1Hz

1 m/s = 113.8 Hz

CLR testing results

50 Sec. Microwave data sample during a period of oxygen carrier, $CuFe_{1.5}Al_{0.5}O_4$ 180-600 micron, circulation.

Temperature in the riser at the time was 816 °C and the gas velocity was around 12.2 m/s.

CLR testing results

CLR testing results

New antenna after the CLR run

- New antenna design survived the run and performed well.
- Mixer failed part way through run without having been able to calibrate but we did get some qualitative data.
- Future work includes exploring more complicated receiver architectures and mass flow extraction algorithms.

Acknowledgment

This work was performed in support of the US Department of Energy's Fossil Energy Transformative Power Generation Research Program and Advanced Combustion Systems Research Program. The Research was executed through the NETL Research and Innovation Center's Transformational Technologies for New and Existing Plants FWP. Research performed by Leidos Research Support Team staff was conducted under the RSS contract 89243318CFE000003.

Disclaimer

This work was funded by the Department of Energy, National Energy Technology Laboratory, an agency of the United States Government, through a support contract with Leidos Research Support Team (LRST). Neither the United States Government nor any agency thereof, nor any of their employees, nor LRST, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

