

CFD Modeling of KiOR's Proprietary CFP Reactors Using Barracuda™

NETL Multiphase Workshop 2019 Bruce Adkins* * Formerly KiOR/Inaeris, Currently at ORNL

Columbus Plant: 500 T/day Biomass

5 Quarters, ~1,000,000 Gallons

KiOR's in-Situ CFP Process is Based on FCC

Technologies

Hydrodynamic Regime Map

KiOR's Test Units

Scaleup Path

Mix Chamber Part 1

Mix Chamber Part 1

Set the baseline drag model (Parker-2) and Blended Acceleration Model (BAM) exponent

B. Adkins, N. Kapur, J. Parker, P. Blaser, J. Prendergrass, "KiOR Update: Incorporating Barracuda® in Our Development Process"

- Barracuda Users Conference, Oct 2015
- AIChE Annual Meeting, Nov 2015
- tcBiomass, Nov 2015

Cold Flow Unit for Producing KCR-Scale CFD Validation Data

Mix Chamber Part 2: Side Jetted CFB

B. Adkins, N. Kapur, T. Dudley, S. Webb, P. Blaser, "Experimental Validation of CFD Hydrodynamic Models for Catalytic Fast Pyrolysis"

- Fluidization XV, May 2016
- Powder Technology v.316 (2017) 725-739

Mix Chamber – Riser (MCR) Experimental Data

Technologies

Custom Drag Multiplier (DMX) vs EMMS

Technologies

Custom DMX Function vs EMMS

Particle Size Classification Predicted Reasonably Well

Catalyst-Biomass Mixing: Getting Close...

ΔP_{Rxr} Predictions Agree Reasonably With Experiments ...

... as do Pressure Profiles, When Holdup is Predicted Correctly

Conclusions

- 1. Inaeris Technologies has developed quantitative hydrodynamic models for in-situ CFP reactors using Barracuda Virtual Reactor[®]. The models:
 - Are sufficiently accurate to assist scale-up
 - Apply equally well to bubbling-bed and MCR fluidization regimes
 - Use full particle size distributions for catalyst and biomass
- 2. For this system:
 - EMMS drag models do not fit the Inaeris data
 - Custom drag multiplier (DM) tables were developed to fit the data. Like EMMS, these are conceptually based on clustering, and are functions of reactor diameter
 - Catalyst-biomass mixing can be modeled using the DM tables
 - Blended acceleration model (BAM) has value for dense-phase mixing behavior, but only for low value for BAM exponent (0.5-1 iso 6)
 - Other CPFD recommended parameters proved to be sufficient
 - CPFD's BGK "collision" model over-homogenizes velocities of catalyst and biomass particles and was not used

Thank You!

Questions?

BFCC is Not FCC

- BFCC feed is solid, not liquid
 - Pyrolysis is slower and more complex than vaporization
 - Pyrolysis leaves behind the char "skeleton" particle
 - Physical interactions of catalyst and biomass/char particles are important

- Deoxygenation reactions are slower than C-C cracking reactions
 - Need much longer residence times than FCC especially since modern FCC is short contact time!
 - Need larger catalyst inventories in the reactor

