

DEM for Non-Spherical Particulate Systems

Vivek Srinivasan

&

Danesh Tafti Dept. Mechanical Engineering Virginia Tech Blacksburg, VA 24060

2019 NETL Workshop on Multiphase Flow Science August 6-8, 2019

High Performance Computational Fluid-Thermal Sciences & Engineering Lab

Outline

- **1.** Background and Motivation
- 2. Objectives of Research
- **3.** Geometry Definition
- 4. Collision Detection
- 5. Collision Resolution
- 6. Results and Discussion
- 7. Summary & Conclusions

- Modelling of particulate systems have mostly been carried out by approximating the particles as spheres
 - Easier and more cost-effective to simulate
- However, with advancements in computational capability, building non-spherical particle models may provide improved fidelity and accuracy.

Non-spherical Particle Systems

• Understanding the fluid - solid interaction is integral for the design and control of many processes

Rock accumulation

ore roasting

Mineral conveying

Grain drying

Biomass/waste combustion/gasification

Garbage grinding

Tablet coating

Airborne particle inhalating

Red blood cell flowing

VZ YECH. Different Types of Biomass Feedstock for Gasification

• To develop a non – spherical DEM model and couple it with a fluid flow solver

Geometry Definition

• It is easier to model a superellipsoid with a Discrete Function Representation (DFR)

$$\begin{aligned} x &= a_1 * sgn(\cos \varphi_1) * |\cos \varphi_1|^{\varepsilon_2} * |\cos \varphi_2|^{\varepsilon_1} \\ y &= a_2 * sgn(\sin \varphi_1) * |\sin \varphi_1|^{\varepsilon_2} * |\cos \varphi_2|^{\varepsilon_1} \\ z &= a_3 * sgn(\sin \varphi_2) * |\sin \varphi_2|^{\varepsilon_1} \end{aligned}$$

• '
$$\varphi_1$$
' varies from $-\pi$ to π and ' φ_2 ' varies from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$

- DFR is preferred to CFR as the solutions when detecting collisions are guaranteed and unique
- DFR is used to generate superellipsoids in this work

- Collision detection determining if two objects are in contact or have interpenetrated each other
- Three levels in the hierarchy of collision detection

V VIRGINIA Collision Detection – Particle - Particle...contd.

- For collision modeling, the collision detection algorithm is supplemented by information about the collision
- Contact point
 - Point of application of collision force
 - Geometric center of the overlapping volume

Contact normal

- Direction of application of collision force
- > Averaged surface normal of all colliding vertices

• Penetration depth

- > Calculation of collision force in time-driven collision model
- Maximum projection distance between any two colliding vertices on surface normal

- A novel collision detection technique is implemented
 - Based on computational geometry
 - Information about the wall normal is available
- The vector between wall node and each of the surface vertices is projected along the wall normal

 $\vec{j_r} = \int \vec{F_r} dt$

Event – driven model :

- A binary impulse based model is used to update the trajectories
- Magnitude of impulse :

$$j_{r} = \frac{-(1 + COR) * (\vec{V}_{r,pre} . \hat{n})}{\frac{1}{m_{1}} + \frac{1}{m_{2}} + \left(\left(\left(\overline{I_{1}}^{-1} * (\vec{r}_{1} \times \hat{n})\right) \times \vec{r}_{1}\right) + \left(\left(\overline{I_{2}}^{-1} * (\vec{r}_{2} \times \hat{n})\right) \times \vec{r}_{2}\right)\right) . \hat{n}}$$

• Post collision velocity update:

$$\vec{v}_{1,post} = \vec{v}_{1,pre} - \frac{j_r}{m_1} \cdot \hat{n}$$
$$\vec{v}_{2,post} = \vec{v}_{2,pre} + \frac{j_r}{m_2} \cdot \hat{n}$$
$$\vec{\omega}_{1,post} = \vec{\omega}_{1,pre} - j_r \cdot \overline{I_1}^{-1} * (\vec{r}_1 \times \hat{n})$$
$$\vec{\omega}_{2,post} = \vec{\omega}_{2,pre} + j_r \cdot \overline{I_2}^{-1} * (\vec{r}_2 \times \hat{n})$$

$$\vec{J}_r$$
 \vec{J}_r \vec{J}_s

- Collisions between particles involve tangential kinematics (friction forces)
- Dynamic component of the total frictional impulse :

 $j_d = \mu_d . j_r$

• Frictional impulse vector acting along the tangent :

$$\vec{j_f} = -j_d \hat{t}$$

• Post collision velocities update :

$$\vec{v}_{1,post} = \vec{v}_{1,post} + \frac{j_d}{m_1} \cdot \hat{t}$$

$$\vec{v}_{2,post} = \vec{v}_{2,post} - \frac{j_d}{m_2} \cdot \hat{t}$$

$$\vec{\omega}_{1,post} = \vec{\omega}_{1,post} - j_d \cdot \overline{l_1}^{-1} * (\vec{r}_1 \times \hat{t})$$

$$\vec{\omega}_{2,post} = \vec{\omega}_{2,post} + j_d \cdot \overline{l_2}^{-1} * (\vec{r}_2 \times \hat{t})$$

Collision Resolution – Soft Sphere

Soft sphere model :

- > Beneficial when applied to multiple particles in the computational domain
- Resolves multiple contacts on the particles' surfaces
- > Particles are allowed to deform along normal and tangential directions
- > Formulated based on the change in momentum effected by the reaction forces
- When a particle deforms, the collision forces can be modeled as a linear spring dashpot system

$$\begin{split} \vec{F}_n &= -k_n \, \vec{\delta}_n - \eta_n \vec{v}_n \\ \vec{F}_t &= \begin{cases} -k_t \, \vec{\delta}_t - \eta_t \vec{v}_t & \text{ if } \left| \vec{F}_t \right| < \mu \left| \vec{F}_n \right| \\ -\mu \left| \vec{F}_n \right| \cdot \frac{\vec{v}_t}{\left| \vec{v}_t \right|} & \text{ otherwise} \end{cases} \end{split}$$

• Total collision force – update

linear velocity

 $m\frac{d\vec{v}}{dt} = \vec{F}_c$

 Effective torque – update rotational velocity

$$\overline{\overline{I}} \frac{d\overline{\omega}}{dt} = \overline{T}_c$$

Following incorporation of non-spherical DEM formulations, it is necessary to validate its functioning

Total Energy Validation

- > Validation of DEM models at two different COR (0.4 and 1.0)
- > Ellipsoids are generated , supplied with an initial velocity equal in magnitude and opposite in direction
- Gravitational and fluid forces are deactivated

Total energy validation - HS model

High Performance Computational Fluid-Thermal Sciences & Engineering Lab

Total energy validation - SS model

VZ YIRGINIA Total energy validation - HS model- multiparticulate system

- Primary purpose of non –spherical DEM model
 - couple the model with a fluid solver GenIDLEST
 - Validate coupled model with experiments

GenIDLEST – implementation to calculate fluid forces for spherical particulate systems The experiments conducted by Muller et al.^[1] on a fluidized bed have been employed

• Simulations - run for 10 seconds and results were averaged for the last 5 seconds

	Particle Property	Value			
	Diameter	1.2 mm	F	uid Property	Value
	Density	1000 kg / m ³		Density	1.205 Kg / m ³
	Friction coefficient	0.1			
	COR	0.98		Viscosity	1.8 x 10 ⁻⁵ Kg / m s
	Stiffness	8 N/m			

[1] Müller, C. R., Scott, S. A., Holland, D. J., Clarke, B. C., Sederman, A. J., Dennis, J. S., & Gladden, L. F., "Validation of a discrete element model using magnetic resonance measurements", Particuology, 7(4), 297–306,2009

VT YIRGINIA Comparison of Temporal Progression of Simulation

Non-spherical DEM

Spherical DEM

Comparison of Averaged Results

Comparison With Experiments

V VIRGINIA Fluidization of Ellipsoidal Particles (work in progress....)

- 4000 ellipsoidal particles in the domain with aspect ratio 4.
- Spherical drag model

Scalability of the Model

Particle Property	Value		
Major axis length	4 mm		
Minor axis length	1 mm		
Density	2650 kg / m ³		
Friction coefficient	0.5		
COR	0.5		
Stiffness	40 N/m		

No. of processors	Wall clock time taken for 1 sec. (in seconds)	Speedup	Efficiency (%)
1	16731	-	-
2	8646	1.934	96.7
4	4463	3.749	93.72
8	2331	7.179	89.73

Total 2000 ellipsoids with 400 surface vertices each. Soft sphere model used

Performance Metrics

No. of surface vertices on each particle	Wall clock time (in second s)	No. of particle - particle collision instances	No. of particle – wall collision instances	Total no. of collision instances	Wall clock time per collision instance per processor (in micro seconds)
400	7645	62415940	10567446	72983386	13.1
900	18972	80681123	12208878	92890001	25.5
1600	37098	86898067	13750284	100648351	46.07

Model	Wall clock time (in seconds)	No. of particle - particle collision instances	No. of particle – wall collision instances	Total no. of collision instances	Wall clock time per collision instance per processor (in micro seconds)
NSP - DEM	7645	62415940	10567446	72983386	13.1
Spherical DEM	2592	60685720	10224988	70910708	4.56

Development of the model:

- A new framework to simulate non spherical particle dynamics has been developed
- In an event driven model, an impulse based collision resolution technique is employed
- In a time driven model, a linear spring dashpot model is utilized

Validation of the model:

- Temporal progression of energy is monitored at various coefficients of restitution
- Coupled CFD- DEM model is validated by comparing to results from experiments

Scalability and Performance:

- The scalability of the model is evaluated in terms of efficiency and speedup
- Metrics that delineate the wall clock time utilized per collision per processor have been documented

Thank you !

Support of the National Energy Technology Lab and Advanced Research Computing at Virginia Tech

QUESTIONS?

