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7/ Background and Motivation

Modelling of particulate systems have mostly been carried out by
approximating the particles as spheres

* Easier and more cost-effective to simulate

However, with advancements in computational capability,
building non-spherical particle models may provide improved
fidelity and accuracy.
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VIRGINIA . .
TECH. Non-spherical Particle Systems

* Understanding the fluid - solid interaction is integral for the design and control of many processes
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Mineral conveying

Biomass/waste
combustion/gasification

Tablet coating Airborne particle inhalating Red blood cell flowing
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V7~ 1" 'Different Types of Biomass Feedstock for Gasification
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VIRGINIA . .
TECH Objectives of Research

* To develop a non — spherical DEM model and couple it with a fluid flow solver

* Define non — spherical
particles

* Detect collisions

* Resolve collisions using appropriate
resolution models

« Parallel implementation

* Couple developed DEM
model with flow solver
GenIDLEST

« Validate functioning of
DEM model

» Validate coupled CFD-
DEM model’'s
functioning
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VIRGINIA
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Non - spherical particulate shapes
» Superellipsoids are generated

» Surface defined by both continuous and

discrete function representations

Continuous function representation (CFR) defines a

surface, usually, in the particle’s local coordinate

system
82/81

)7 6"
_ + | — + [ — =1
dq do ds

Disadvantage : collision detection and resolution

algorithms are computationally intensive
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| INI e ege
Yeer A Geometry Definition.......

* Itis easier to model a superellipsoid with a Discrete Function
Representation (DFR)

x = aq * sgn(cos ¢1) * |cos @12 * |cos @, |*1

y = ap *sgn(singq) * |sin @42 * |cos ¢,|*
z = az * sgn(sin@,) * |sin @,|*

. . T i
° ‘@,’ varies from - tom and ‘p,’ varies from - Sto~

* DFRis preferred to CFR as the solutions when
detecting collisions are guaranteed and unique

e DFRis used to generate superellipsoids in this work
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VIRGINIA

TECH. Collision Detection — Particle - Particle

» Collision detection - determining if two objects are in contact or have interpenetrated each other

* Three levels in the hierarchy of collision detection

Level 1

Binning particles into separate computational cells

Level 2

Particles falling under a sphere of influence comprise the
respective neighborhood list

Level 3

Surface coordinates of one particle are evaluated with
respect to the surface function of the other particle
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than 1

| ’ ,—\—> Value of 1
Value greater than 1
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1N collision Detection — Particle - Particle...contd.

* For collision modeling, the collision
detection algorithm is supplemented by
information about the collision

* Contact point o~

» Point of application of collision force v
» Geometric center of the overlapping volume

* Contact normal

» Direction of application of collision force

» Averaged surface normal of all colliding vertices Contact Plane
P,
 Penetration depth £1%,
» Calculation of collision force in time-driven collision model '"
» Maximum projection distance between any two colliding T

vertices on surface normal
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VIRGINIA .« o . .
TECH Collision Detection — Particle-wall

* A novel collision detection technique is implemented

» Based on computational geometry
» Information about the wall normal is available

* The vector between wall node and each of the surface vertices is projected along the
wall normal

fwaul __—» Negative Projection
«— |~ -
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Tt collision Resolution — Hard Sphere — Normal Impact

Event — driven model :
* A binary impulse based model is used to update the trajectories jr = J F. dt

* Magnitude of impulse :

—(1+ COR) * (V. pye - 1)
1 1 = - ~ - T = A~ = =
m—1+m—2+<((11 1*(T'1><7’l))x7"1>+<(12 1*(r2><n))><r2)>.n

* Post collision velocity update:

- A
V1,post = Vipre — m .n

5 s Jr .
Vapost = Vo pre T m n
2

1 > A
pre — Jr- 11 x*(rp X 71)
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Tt collision Resolution — Hard Sphere — Tangential Impact

* Collisions between particles involve tangential kinematics (friction forces)

* Dynamic component of the total frictional impulse :
jJa = Ma-Jr
* Frictional impulse vector acting along the tangent :
jf=—jat
* Post collision velocities update :

Vipost = Vipost T ——
1

>

3 3 Jd
2,post — Y2,post
m;

>

— — . =-1 - 2
W1 post = W1 post — Jd I o# (7‘1 X t)

— — . =-1 - ~
W2 post = W2,post T Jd g, o+ (X t) ™~ -
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Yeeu A Collision Resolution — Soft Sphere

Soft sphere model :

» Beneficial when applied to multiple particles in the computational domain
» Resolves multiple contacts on the particles’ surfaces

» Particles are allowed to deform along normal and tangential directions

» Formulated based on the change in momentum effected by the reaction forces

*  When a particle deforms, the collision forces can be modeled as a linear spring —

dashpot system

—ke 8¢ — eV if|ﬁt| < Hlﬁnl

F; v
—u|Fn| Tt otherwise
|Vt|
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Yeeu A Collision Resolution — Soft Sphere ...contd.

* Total collision force — update

linear velocity

» Effective torque — update

rotational velocity

Linear Velocity Linear Velocity
_dg . update: update:
I T Te  Normal force only * Total force
oF.=F, eF.= F, +F,
Rotational Velocity Rotational Velocity
update: update:
oT. = txF, eT. = ¥xF,
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\/Z/ Results and Discussion

Following incorporation of non-spherical DEM formulations, it is necessary to validate its functioning

« Validate by observing total energy of system
Toral Snergy - Different COR specified
» Both Hard Sphere and Soft Sphere

» Couple with flow solver GenIDLEST
Coupled CFD- « Compare to experimental measurements in

it fluidized bed
DEM Validat
alidaton - Generate spheres (subset of superellipsoids)

and compare averaged results

Scalability of * Evaluate parallel scalability
Model « Speedup and Efficiency of DEM model

Performance » Dependency of DEM collision model on
Metrics particle geometry definition

Total Energy Validation
Validation of DEM models at two different COR ( 0.4 and 1.0)
Ellipsoids are generated , supplied with an initial velocity equal in magnitude and opposite in direction

Gravitational and fluid forces are deactivated
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Yeeu A Total energy validation - HS model
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Yeeu A Total energy validation - SS model
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LM Total energy validation - HS model- multiparticulate system
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7/ Coupled CFD-DEM Validation

Primary purpose of non —spherical DEM model
» couple the model with a fluid solver - GenIDLEST
»|Validate coupled model with experiments

GenlIDLEST - implementation to calculate fluid forces for spherical particulate systems
The experiments conducted by Muller et al.[*! on a fluidized bed have been employed
Simulations - run for 10 seconds and results were averaged for the last 5 seconds

Diameter 1.2 mm
Fluid Property Value

Density 1000 kg / m3 _

Density 1.205 Kg / m3
Friction coefficient 0.1
Viscosity 1.8x10°Kg/ ms
COR 0.98
Stiffness 8 N/m
[1] Miiller, C. R, Scott, S. A., Holland, D. J., Clarke, B. C., Sederman, A. J., Dennis, J. S., & Gladden, L. F. ,”Validation of a discrete element model using magnetic r e ement ”, Particuology, 7(4), 297-306,2009
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VIRGINIA

TECH. Comparison of Temporal Progression of Simulation

t=196s

t=196s

Non-spherical DEM
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Spherical DEM
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Non-spherical Spherical DEM
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Comparison of Averaged Results

Non-spherical Spherical DEM

DEM
35 35
3 3
vp/ U,
25 25 0.12
0.08
2 2 0.04
> > 0
15 15 a -0.04
-0.08
1 1 -0.12
-0.16
05 05 -0.2
0 h 0

Averaged non
dimensionalized particle
velocity

22



VIRGINIA

TECH Comparison With Experiments
Q Muller Measurement 8] Muller Measurement
r ¢ Muller Simulation 0.4 ¢ Muller Sim‘lllﬂﬁﬂll
i o Non Spherical DEM - SS B : l:(’ll: Sph(l?l]';(;;lll\/IDESﬁ;[ - 88
| v Spherical DEM - S8 i pherica -
08 B
! o]
06 @@@%%ﬁggggﬁ
o u:@ oo @
w b o) é
0.4 B
02| I
0g— ‘o?zl ‘0.|4| ‘0?6‘ ‘0f8 1| -0-40""1'0' ‘2'0‘ ‘3'0‘ ‘4'0'
X/L ref X (mm)
Averaged void f  ‘Model ~ Wall clock time taken for DEM le velocity values at
16.4 mm from computations on two computational .
cores distributor plate
Spherical 1207040 seconds (or) 13.97 days
DEM
Non - 1661787 seconds (or) 19.23 days
spherical
DEM
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1=0.00s
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Fluidization of Ellipsoidal Particles (work in progress....)

4000 ellipsoidal
particles in the
domain with
aspect ratio 4.
Spherical drag
model
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VIRGINIA

TECH. Scalability of the Model
Particle Property Value
Major axis length 4 mm L:__Y
Minor axis length 1 mm
Density 2650 kg / m3 (Il M 4T>
R
Friction coefficient 0.5 MHHH
(0 g i
COR 0.5 Time = 0.00 s ~ dh\q&‘”“{ 1}1{
Stiffness 40 N/m T
Wall clock time SIS (NTOINE, o [ I T [ e B e 1 1
No. of Efficiency POSnE BRspnt et sy nannnes nemane [y s [ns s sl Sue
takenforlsec_ Speedup ( ) Rnnrrd rreee | Rl e el el el e e
processors % _ -
: [ | [ ] .
(In SecondS) w/U_ref: -20-18-16-14-12-10 -8 -!4 220 2 4 6 8 10
1 16731 . -
2 8646 1.934 96.7 . . .
Total 2000 ellipsoids with 400
4 4463 3-749 93.72 surface vertices each. Soft sphere
8 2331 7.179 89.73 model used
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VIRGINIA

TECH. Performance Metrics
Wall clock
Wall time per
No. of No. of No. of . p
clock . . collision
surface . particle - | particle— | Total no.of |
) time . . instance
vertices (in particle wall collision or
on each collision collision instances P
. second | . . processor
particle instances | instances L.
s) (in micro
seconds)
400 7645 | 62415940 | 10567446 | 72983386 13.1
900 18972 | 80681123 | 12208878 | 92890001 25.5
1600 37098 | 86898067 | 13750284 | 100648351 46.07
Time = 0.00 s
Wall clock _
No. of No. of time per i
Walli . . Total no. . '—’
particle - | particle - collision | .
clock . of ) : \
Model . . particle wall L. instance per oco 528 +3: 000 5528000 B3 D
time (in . . collision 000 60 OO0 00 GOOCOOO 060 600 000
collision collision | . processor
seconds) | . ) instances L. B _
instances | instances (in micro [ EEE |
SecondS) w/U_ref -10-8 -6 -4 -2 0 2 4 6 8§ 10
NSP - DEM 7645 62415940 | 10567446 | 72983386 13.1
Spherical
DEM 2592 60685720 | 10224988 | 70910708 4.56
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VIRGINIA .
TECH Summary & Conclusions

Development of the model:
* A new framework to simulate non spherical particle dynamics has been developed
* In an event - driven model, an impulse based collision resolution technique is employed

* In atime - driven model, a linear spring — dashpot model is utilized

Validation of the model:
*  Temporal progression of energy is monitored at various coefficients of restitution

*  Coupled CFD- DEM model is validated by comparing to results from experiments

Scalability and Performance:
* The scalability of the model is evaluated in terms of efficiency and speedup

*  Metrics that delineate the wall clock time utilized per collision per processor have been

documented

|
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