Hinze scale bubble deformation and breakup in strong turbulence

Ashik Ullah Mohammad Masuk

Ashwanth Salibindla

Rui Ni

Department of Mechanical Engineering

Johns Hopkins University

Motivation

anspo

Addressing the complex shapes in multiphase flows is challenging in both simulations and experiments

NIVERSITY

Motivation

Numerical simulations considering complex rigid shape [(Paschkewitz et. al. (2004), He et. al. (2017)] or deformable shapes [Lu and Tryggvasson (2008), Spandan et. al. (2017)] are very rare

V-ONSET(Vertical Octagonal Non-corrosive Stirred Energetic Turbulence)

- Opposing mean flow
- High energy dissipation rate

Masuk et. el. (RSI, 2019)

Imaging of the test section with 6 high speed cameras

4 Photron AX200 2 Photron SA Series Upto 6400 fps

Raw images of air bubbles in turbulent water imaged at 4000 fps

Visual hull reconstruction

Visual hull reconstruction

Visual hull reconstruction

Virtual Camera Method

4 real cameras viewing an spherical object from one side

Virtual Camera Method

Visual hull shown as gray envelope

Optimize the angle between a virtual camera and other existing cameras

Synthetic Dumbbell Reconstruction

breakup scenario

DNS data reconstruction

Cam 2 Cam 3 Cam 1 No need for 2D from DNS dataset **Segmentation!** Lu and Tryggvasson (2008)Cam 5 Cam 4 Cam 6

Synthetic images

DNS data reconstruction

DNS

Virtual Camera

DNS data reconstruction

Experimental Results

A robust virtual-camera 3D shape reconstruction of deforming bubbles/droplets with additional physical constraints (IJMF, under review)

Time: 0.00 ms

Bubble size distribution

Aspect ratio PDF

Surface area increases due to non-affine deformation

 α

Conclusion

- A new **Virtual Camera** method was developed for 3D shape reconstruction of bubbles/droplets in turbulence.
- No need for 2D segmentation
- The methods helps to reconstruct non-affine deformation in turbulence.
- In strong turbulence bubbles deform significantly more than that represented by an ellipsoid

Award Nos. 1705246 CAREER-1653389

