CFD DEM Analysis of a Dry Powder Inhaler with containerization MFiX on Cloud

Vinod Kumar, V M Krushnarao Kotteda, Antara Badhan University of Texas at El Paso

2019 NETL Workshop on Multiphase Flow Science, August 6-8, 2019

- Introduction
 OPI
 MFiX
 Dakota
 - Framework to implement MFiX in Dakota
 - Verification and Validation
 - Results

- •Inhalation Therapy refers to direct delivery of the medications to/via the lungs by inhalation
 - Regional Therapeutic Effect
 - Respiratory Disease
 - Asthma and Chronic obstructive pulmonary disease (COPD)
 - Pulmonary Hypertension
- Advantages of Inhalation Therapy
 - Delivery of the Medications Directly to the Action Site
 - Rapid Onset
 - Enhanced Bioavailability by Avoiding First Pass Effect

Image sourcess: http://www.whitehousepharmacy.co.za/medicine-usage-guides/breath-actuated-inhalers/

Future Challenges of DPI

Challenge/objective	Solution
Reducing patient errors	Simple self-intuitive DPI design Minimal number of handling steps The same inhaler for all inhaled medication
Improving patient compliance with the inhalation instruction	Simple, self-intuitive DPI design Feedback on inhalation performance
Improving patient adherence to the therapy	Minimizing the number of inhalations per dose Simple, compact DPI design Minimal number of handling steps
Improving safety	No unnecessary excipients Disposal inhalers for special applications e.g. hygroscopic drugs, vaccines, antibiotics (when the risk of bacterial resistance development in the DPI)
Improving efficacy	More powerful inhaler design (balancing between inter particulate, dispersion, and disposition forces)
Specialized inhalation	Patient (group) tailored DPI design
Reducing the costs of inhaled therapy	Simple and cheap (but effective) DPI design Simple drug formulation technologies

MFiX

MFiX is

- a multiphase CFD software
- developed by NETL (Opensource)
- a legacy code written in Fortran

J

Ĩ

 $\overline{\mathbf{O}}$

Provides a suite of models that treat the carrier phase (gas phase) and disperse phase (solids phase) differently.

- MFIX-TFM (Two-Fluid Model)
- MFIX-DEM (Discrete Element Model)
- MFIX-PIC (Multiphase Particle in Cell)

Explore and predict with confidence.

Dakota has grown significantly beyond an optimization toolkit.

- state-of-the-art optimization methods,
- methods for sensitivity analysis, parameter estimation, uncertainty quantification, and verification

The toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods.

UQ methods

Sampling (Monte Carlo, LHS)

- Robust, understandable, and applicable to any model
- \checkmark Slow to converge
- ✓ Moments, PDF/CDF, correlations, min/max

Reliability

- Goal-oriented; target particular response or probability levels
- Efficient local (require derivatives) / global variants
- Moments, PDF/CDF, importance factors

Stochastic Expansions

- Surrogate models tailored to UQ for continuous variables
- ✓ Highly efficient for smooth model responses
- ✓ Moments, PDF/CDF, Sobol indices

Epistemic

- Non-probabilistic methods
- Generally applicable, can be costly when no surrogate
- Belief/plausibility, intervals, probability of frequency

Consider variable characterizations, model properties, ultimate UQ goal to choose a method

A Practical Process for UQ

environment

method sampling sample_type lhs samples = 1000 seed = 98765 rng rnum2

variables
normal_uncertain = 2
means = 0.80 0.80
std_deviaions = 0.10 0.10
descriptors 'x1''x2'

interface fork analysis_driver = 'mfix'

responses
 response_functions = 1
 no_gradients
 no_hessians

UQ results with Dakota

Case #	Input1 e _{p,n}	Input 2 e _{w,n}	Bed height Sample mean	Bed height Sample Std deviation
1	N(0.8,0.1)	N(0.8,0.1)	14.374	1.7e-01
2	N(0.8,0.1)	N(0.8,0.05)	14.372	1.6e-1

UQ results with PSUADE

MCS with 100,000 samples

Case #	Input1 e _{p,n}	Input 2 e _{w,n}	Bed height Sample mean	Bed height Sample Std deviation
1	N(0.8,0.1)	N(0.8,0.1)	14.371	1.7e-1
2	N(0.8,0.1)	N(0.8,0.05)	14.367	1.5e-1

Flow in the fluidized bed

 $e_{p,n}$ = particle-particle restitution co-efficient

 $e_{w,n}$ = Particle-wall restitution co-efficient

Response function (Bed height) =

= 17.026 - 7.767 $e_{p,n}$ - 0.46428 $e_{w,n}$ + 5.6644 $e_{p,n}^2$ + 0.18379 $e_{p,n} e_{w,n}$ + 0.20556 $e_{w,n}^2$

Gel, A., Garg, R., Tong, C., Shahnam, M. and Guenther, C., 2013. Applying uncertainty quantification to multiphase flow computational fluid dynamics. *Powder technology*, 242, pp.27-39.

Flow in a fluidized bed

Central jet fluidized bed

•The air is injected at a speed of 4200 cm/s through a narrow inlet having width of 1 cm and located exactly at the geometric center of the bottom wall.

ocells size: 1 cm x 2 cm

•Number of cells: 675 (=15x45) computational cells.

•The bed is initialized with 217.15 g of particles with a diameter of 0.4 cm and density of 2.7 g/cm3, resulting in total of 2400 spherical particles.

ODEM

•Non reacting flow

VMK Kotteda, A Stephens, W Spotz, and V Kumar, and A Kommu, 'Uncertainty quantification of fluidized beds using a data-driven framework', Powder Technology 354, 709-718 (2019)

Flow in a fluidized bed: parameters for UQ analysis

	D _p (cm)	U _{inlet} (cm/s)	e _{p,n}	e _{w,n}	KN (g/s²)	KN _W (g/s²)	μ	μ_W	$\mu_{ m g}$ (g/ cm s)
mean	0.34	4200	0.8	0.8	1000000	1000000	0.1	0.1	0.00018
std	0.0297	367.5	0.07	0.07	87500	87500	0.0087	0.0087	0.00001575

= Particle diameter

 D_{p}

Uinlet

e _{p,n}

KN

μ

 μ_{g}

- = Velocity of the fluidizing agent at the inlet
- = particle-particle restitution co-efficient
- = particle-wall restitution co-efficient e _{w,n}
 - = particle particle normal collision spring constant
- = particle wall normal collision spring constant KN_w
 - = particle particle friction co-efficient
- = particle wall friction co-efficient μ_W
 - = viscosity of the fluidizing agent at the inlet

Response function Average bed height $H_p(t) = \sum_{n=1}^{N_p} Y^n / N_p$

UQ results: Flow in a fluidized bed

DPI: Problem definition

- 20 equi-spaced discretized cells in the axial direction
- 10 equi-spaced discretized cells in the normal direction
- 500 drug particles
 - Size: 3.2 μm
 - Density: 1520 kg/m³
- 500 carrier particles
 - Size: 52.5 *µm* and
 - Density:2.650 kg/m³
- Velocity of air: 3.0 m/s,
- Density of air: 1.205 kg/m³

Results

۵Y

Velocity fields along the x-direction

Velocity (y-direction) fields along the y-direction

Results: Effect of particles diameter

axial velocity (y-direction) fields

axial velocity (y-direction)

Results: Effect of velocity at the inlet

axial velocity (y-direction) fields

axial velocity (y-direction)

Summary

- A framework is used to implement MFiX in Dakota-UQ toolkit
- The framework has been validated on various test cases.
- •2D simulations are carried out with MFiX to simulate flow in an inhaler.
- Particles residence time increases with the particle diameter
- Particle residence time decreases with an increase in the inflow velocity.

-5 0 5

Matlab Unwrapped(Phase), Rytov=0.2

Wrapped(Phase), Rytov=0.2

Acknowledgement

THANK YOU

