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* Development and application of a systematic VVUQ approach for

multiphase flows
* Extension of the existing methodologies
* Survey of subject matter experts and tollgates for review
* Systematic simulation campaign and design of experiments

* Benchmark problem and preliminary experiments: Hopper discharge

* Bench-scale experiments to enable a quick turnaround for Discrete Element Modeling

(DEM) simulations

* Design criteria to ensure mass flow operation mode

* MFIX-DEM simulation campaign
* Validation of MFIX-DEM linear spring dashpot (LSD) model

* Sensitivity analysis of model parameters on the quantities of interest
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Motivation

* VVUQ standards have been established to quantify the degree of
accuracy using CFD solution and experimental data for a specified
variable at a specified validation point

* Application to multiphase flow modeling and simulation has encountered
several challenges

* Assessing uncertainty due to numerical discretization

* Lack of readily available objectively-assessed experimental uncertainty

* Explore the extension of the VVUQ procedures for multiphase flow
applications using some demonstrative cases starting with granular
discharge through a conical hopper
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Benchmark problem - Preliminary
experiments

* Discharge through conical hopper having pure granular flow commonly
seen in industries (chemical, pharmaceutical, food, mining)

 Simplified hydrodynamics to focus on particle-particle and particle-wall
interactions. Interfacial gas neglected (High Bagnold number).

* Bench-scale experiments to enable a quick turnaround, 3-D printed
geometries to ensure consistency between experiments and simulations

D,
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e Control variables

30

* Orifice diameter Hopper 11

* Apex angle

N
o

* Quantities of interest (Qol)

* Discharge tlow rate

=
o

mass in the collector (g)

* Angle of repose
* Material: High density polyethylene (HDPE) o

e Geldart B classification t(s)

* Mean particle diameter: 848 pm
* Density: 884 kg/m?3

30

Hopper 22

[
o

Index 60 (deg) h, (cm) h,(cm) D (mm) D, (cm)

mass in the collector (g)

11 13.44 10 2.5 5.8 5.36
12 13.12 10 2.5 7 5.36 0
21 23.63 10 2.5 5.8 9.33

22 23.34 10 2.5 7 9.33 0
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Benchmark problem - Simulations

* Increasing demand for DEM simulations with improving computational
resources

* Focus on particle properties before including the gas phase

* Solution methodology: Alternating use of Force-displacement law and
Newton’s second law of motion. Time step size based on spring stiffness
provided by the user (fixed).

* Isolating uncertainties due to model parameters related to particle-
particle and particle-wall interactions from the other sources including
spatio-temporal discretization
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Survey of Subject Matter Experts

* Survey pertaining to experiments and DEM simulations was carried out
with the subject matter experts to identify:
* Quantities of interest (or response variables)
* Control variables, which are to be varied systematically
* Held-constant factors for experiments and modeling

* Known nuisance factors for the experiments

* Based on the feedback, 10 control variables were identified for DEM
simulations as important but without any consistent and objective
ranking of importance

* Screening study initiated to quantitatively determine the most influential
factors on the response variables
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Example illustration of survey: N=|Maronat

- ldentification and Characterization of TL rEctnowoey
Control Variables for CFD Simulations: LABORATORY

Computational model - Rejected Response Variables

SME | Rejected response variable Justification of rejected response variable

8. Subject Matter Expert (SME) Feedback Summary 1 PSD of discharged particles Computational simulztions will be conducted with mono-disperse particles so there is

N . no PS0 will be generated of discharged particles
Computational model - Response Variables

Flow pattern - highest and lowest points | These are connected to model input parameters, specifically the total number of

Accepted - Ranked by overall score Rejected in hopper particles.
1. Discharge rate (kg/s) *  Particle Size Distribution (PSD) of discharged 4 Particle-wall friction coefficient This is 2 model input parameter.
2. Angle of repose (degree i
g P [ g } pEII'tIC|ES o 4 Particle-particle restitution coefficient This is 2 model input parameter.
*  Flow pattern - lowest point in hopper
4 Particle-particle friction cosfficiants This is 2 madel input parameter.

*  Flow pattern - Highest point in hopper

¢ particle-wall friction coefficient Computational model - Accepted Control Variables
*  Particle-particle restitution coefficient

*  Young's Modules Particle-particle coefficient of friction (sliding) Rank: 1 of 10
*  Particle-particle dynamic friction coefficient Proposed control variable value range
*  Particle-particle static friction coefficient SME Rank Normal Low High Justification
Computational model - Control Variables | have sean the friction coefficiznt can be vary sensitive to
1 1 05 0.0 10 things like humidity. Itwould be best to measurs the friction
Accepted - Ranked by overall score Rejected cosfficient in house if pozsible.
1. PP coeffir_:ignt of friFtign {slit_:lirjg} e Coefficient of friction (rolling) 5 , s o 0 [itis] undlear whether distinction shauld be made betwesn
2. PW coefficient of friction (sliding) * Initial voidage - - ) dynamic/static value but MFIX doesn't have this fine control.
3. PP restitution coefficient * [nitial bed height 3 7 05 MR N/R: MR
4. PP LSD normal spring stiffness coefficient e Particle density
5. PW restitution coefficient = Initial particle size distribution (PSD) a a /R /R /R e oM o 5t Qraer and inguts of ynamic and
6. PW LSD normal spring stiffness coefficient »  Wall asperities -
7. PPLSD tangential spring stiffness coefficient | ,  (rifice diamater 5 1 N/R N/R N/R N/R
8. PW LSD tangential spring stiffness s Apexangle 3 \I’BD [5]/ 035 0.31 0.39 IM: Nt specific on pp or pw
coefficient *  Height above collection plate Particle-witeoefficient of friction (sliding) Rank: 2 of 10
5. PP LSD tangential damping factor ng i
10. PW LSD tangential damping factor Proposed control variable value range
Computational model - Held Constant Variables SME Rank Normal Low High Justification
Accemed - Ranked 'JY overall score Rejected | hawe se=n the friction coefficient can be very sensitive to
R ~ 5 1 2 0.68 045 0.30 things like humidity. it would be best to measure the friction
1. Particle density (kg/m?) * Mormal spring stiffness coefficient in house if possible.
2. Part!cle dlamertt.ar{m) *  Time step 2 A R R R /R
3. Particle sphericity
3 8 05 /R MR NJR
4 1 N/R N/R N/R JM: Rank ossumed from list order.
5 2 MR MR MR NJR
[ \I’BD [5]/ 0.35 031 033 JM: Not specific on pp or pw
e T
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Screening study

* Morris One-at-a-time (MOAT): Computationally efficient for screening
study involving a large parameter space

(K kg ki 1 Ki D K1k ) =i (K kg ki 1 Kin 1okm
» Elementary effect: d, = &akztiukitblkn)-eluke  Jy-1llrln)

2 2
* Global effect: p; = Z":‘ﬂ, 62 = rz(dzzr:g dij)

e LLarger mean (U;;)— more sensitive; larger variance 0'2- — more non-
[ ] g L] L] l]. , g ’ l.]
linearity/interactive effects

* Computational model — Parameters considered based on Subject matter
expert %SME feedback

article-Particle coefficient of friction
Particle-Wall coefficient of friction
Particle-Particle coefficient of restitution
Particle-Wall coefficient of restitution
Particle-Particle LSD normal spring stiffness
Particle-Wall LSD normal spring stiffness
Particle-Particle LSD tangential spring stiffness coefficient
Particle-Wall LSD tangential spring stiffness coefficient
Particle-Particle LSD tangential spring stiffness damping coefficient
Particle-Wall LSD tangential spring stiffness damping coefficient

(CNONONONONONONONONG
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Screening study - Sampling
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Screening study - Resulis

Modified Means Plot (bootstrap)
T T T T T T

3 . Modif'ied Me?ns Plo't (boot?trap) .

251 N =44 - T N =55 1 1 x3 x3 x3 x3
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g 615
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: : 5 e X9 X9 %9
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. i i Modiflied Mea;\ns Plolt (boot?trap) i i i - | . . Modiflied ezlans Plolt (bnots';trap) : i i Y Ranking Order:

25H -
l.e,,, 2. , 3. 4. e
it N = 77 : N = 110 p-p 1 & Hppr 2 Hpw p-w

N

* Time for completion — 2
days to 2 months depending

N
T

=

o

on K, which determines At
* k,=100 N/m for global

sensitivity analysis based on

[N

Modified Means (of gradients)
Modified Means (of gradients)

o
13

screening study
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* Question: What is the extent to which the input parameters or their

interactions influence the quantities of interest?

* Top four parameters determined by the screening study were selected for

Global Sensitivity Analysis

* A new set of design of experiments was generated

* 40 samples having 4 parameters varied systematically

* The effect of sampling methodology was also investigated

* Space-filling design based Optimized Latin Hypercube (OLH) sampling (R library)
* Quasi Monte-Carlo sampling (LPTAU sampling in PSUADE UQ toolkit from LILNL)
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Effect of sampling methods on GSA
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Surrogate model for GSA

* Monte Carlo sampling based methods are computationally prohibitive for
uncertainty quantification analysis of multiphase flows

* Gaussian process based surrogate model built using the OLH sampling
simulation results (40 samples)

Mesh Plot for Discharge Rate Contour Plot for Discharge Rate
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Note that other two parameters are kept at mid point settings for the construction of surrogate contour plots
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Surrogate model quality

* To assess the quality of the surrogate model perform cross validation

* One sample point outside 1o

0.45 CV Error Histogram CV Predictions (scaled rmse= 4.5522e-02, R2= 4.9428e-01)
0.4} 24} RED: predicion outside +/- 1 std dev
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Surrogate model for GSA

* Similar Gaussian process based surrogate model constructed for
simulation results obtained through LPTAU sampling

Mesh Plot for Discharge Rate Mesh Plot for Discharge Rate Mesh Plot for Discharge Rate
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Note that other two parameters are kept at mid point settings for the construction of surrogate contour plots
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Preliminary GSA resulis

Total Order Sobol Indices (with bootstrap)

* Preliminary variance
based sensitivity
analysis: Sobols’ Total

0.6 Indices Method
. implemented in
PSUADE UQ Toolkit

using OLH (40 samples)

* Particle-particle

o
W

coefficient of restitution
1s the most influential

Total Order Sobol Index (Normalized)
=] o
(¥ 'S

model parameter

o
s

* Analysis of interaction

p_p P_p P_W P-W etfects in progress
Restitution Coefficient Restitution Coefficient
Coefficient of Friction Coefficient of Friction
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* Extension of VVUQ methodology with systematic design of experiments
and simulations (work in progress)

* Bench-scale experiments to ensure quick turnaround

* 3-D printed geometries to ensure consistency with the simulations

* Survey of subject matter experts for VVUQ methodology input

* Global sensitivity analysis (GSA) shows sampling invariance, possible
interaction between model parameters

* Ranking of model parameters for hopper discharge process:

1.

2.
3.
4

Particle-particle coefficient of restitution
Particle-particle coefficient of friction
Particle-wall coefficient of restitution

Particle-wall coefficient of friction

Thank you for your attention. Questions???
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