

Numerical Simulation of Oil Well Cementing and Gas Migration Process

Amir Mofakham,¹ Farid Rousta,¹ Mehrdad Massoudi,² Eilis Rosenbaum,² Barbara Kutchko² and Goodarz Ahmadi¹

> ¹ Department of Mechanical and Aeronautical Engineering Clarkson University, Potsdam, NY

&

² National Energy Technology Laboratory US Department of Energy, Pittsburgh, PA

Outline

- Introduction
- Cementing Process
- Gas Migration
- Objectives
- Results
- Conclusions

Introduction

Well Cementing Process

- Inject drilling fluid
- Inject spacer fluid
 - Compatible with the drilling fluid/cement slurry
 - Change surface wettability
 - Remove debris
- Inject cement slurry
- Inject mud

- Casing equipment (collars, centralizers, well cleaners)
- ➢Spacer fluid
- Pipe surface finishing (roughness)
 - Mill varnish, Sandblasted, Rusty, Resin-sand coated
- Thermal and stimulation stresses
 - ➢ Hydration heat
 - Completion, stimulation, production pressure

- During the cementing process, cement experiences three distinct phases (Slurry, Gel, and Solid).
- In the slurry phase, the cement begins to hydrate, pore pressure begins to drop, and gas migration could begin to occur due to the higher formation pressure.
- In the solid phase, the cement becomes impermeable and no fluid can invade through
- The gel phase is most critical during which formation gas could migrate into the cement if the pore pressure is lower than the formation pressure.

Production Engineering, 1990

Gas Migration

Fig. 7-Pore pressure vs. time in an impermeable cement system.

Cheung and Beirut, Journal of Petroleum Technology, 1985

326 MESH SCREEN

BOTTOM VALVE

Fig. 1-Gas flow simulator

1500

PRESURI

REGULATO

ITROGET

TEMPERATURE CONTROLLE

HERMOCOUPL

RECORDER

PRESSURE TRANSDUCES

AS FLOW

Fig. 4-Pore pressure vs. time in a slurry containing fluid-loss additive.

Industrial Practices to Prevent Gas Migration

- Properly clean the wellbore
- Use proper fluid spacers
- Use additives to
 - Control fluid loss
 - Control the setting time
 - Reduce the transition time
 - Immobilize the fluid within the pore spaces

• Etc.

http://www.drillingcourse.com/2015/12/introduction-to-cementing.html

Objectives

- Develop a computer model for gas migration in well cement
- Simulate gas bubble motion in cement paste
- Provide a better understanding of the gas migration process in well cement
- Develop a computational model for cement slurry injection

Modeling

I

....

.

Numerical Approach

- Assumed two-phase flows
- The VOF multiphase model of ANSYS-Fluent

$$\frac{1}{\rho_{q}} \left[\frac{\partial}{\partial t} (\alpha_{q} \rho_{q}) + \nabla \cdot (\alpha_{q} \rho_{q} \vec{v}_{q}) = S_{\alpha_{q}} + \sum_{p=1}^{n} (\dot{m}_{pq} - \dot{m}_{qp}) \right]$$
$$\rho = \alpha_{2} \rho_{2} + (1 - \alpha_{2}) \rho_{1} \qquad \qquad \sum_{q=1}^{n} \alpha_{q} = 1$$

$$\frac{\partial}{\partial t}(\rho\vec{v}) + \nabla\cdot(\rho\vec{v}\vec{v}) = -\nabla p + \nabla\cdot\left[\mu\left(\nabla\vec{v} + \nabla\vec{v}^{\mathrm{T}}\right)\right] + \rho\vec{g} + \vec{F}$$

Rheological Model

$$\begin{split} \bar{\bar{\tau}} &= \bar{\bar{\tau}_0} + \eta D & \text{Herschel-Bulkley Model} \\ \eta &= \frac{\tau_0}{\dot{\gamma}} + k \left(\frac{\dot{\gamma}}{\dot{\gamma}_c}\right)^{n-1} & \text{if } \dot{\gamma} < \dot{\gamma}_c \\ \eta &= \frac{\tau_0 \left(2 - \frac{\dot{\gamma}}{\dot{\gamma}_c}\right)}{\dot{\gamma}_c} + k \left[(2 - n) + (n - 1) \frac{\dot{\gamma}}{\dot{\gamma}_c} \right] & \text{if } \dot{\gamma} > \dot{\gamma}_c \end{split}$$

$$\tau$$

 τ_0
 τ_0
 γ_0
 γ

Properties			
Liquid	Cement Slurry	Drilling Fluid (Water)	
Density (kg/m^3)	1200	998	
Surface Tension (N/m)	0.07	0.07	
Rheological Model	Herschel-Bulkley Model	Linear Newtonian	
Viscosity (kg/ms)	-	1×10^{-3}	
Consistency Index (k) (kgs^{n-2}/m)	0.6	-	
Power-Law Index (n)	0.4	-	
Yield Shear Stress $ au_0$ (Pa)	1.4	-	
Critical Shear Rate $\dot{\gamma_c}$ (1/s)	5.5	-	

Results

Clarkson UNIVERSITY defy convention

2D Channel with Flat Walls

Geometry		
Length (m)	1	
Width (cm)	6	
Air Inlet Size (mm)	5	

Cement Slurry Properties		
Viscosity (kg/ms)	1	
Density (kg/m^3)	998	
Surface Tension (N/m)	0.07	

Slurry Model: Newtonian

V = 0.01 (i	m/s)	V = 0.2 (I	m/s)	V = 1 (m	ı/s)

Cylindrical Geometry

Length (m)	1
Inner Diameter (cm)	20
Outer Diameter (cm)	36
Air Inlet Diameter (cm)	1
Number of Elements	770,511

Cylindrical Geometry

Liquid Properties		
Viscosity (kg/ms) (Honey)	10	
Density (kg/m^3)	998	
Surface Tension (N/m)	0.07	

Slurry Model: Newtonian (High Viscosity)

Irregular Wall Shapes 2-D

Liquid Properties		
Viscosity (kg/ms)	1	
Density (kg/m^3)	998	
Surface Tension (N/m)	0.07	

Model: Newtonian (Moderate Viscosity)

Irregular Wall Shapes 2-D

Liquid Properties		
Viscosity (kg/ms)	1	
Density (kg/m^3)	998	
Surface Tension (N/m)	0.07	
Cement Inlet Velocity (m/s)	0.5	

Models Cement: Herschel-Bulkley Drilling Fluid: Newtonian

Velocity Contours

Sample Simulations Cement: Herschel-Bulkley Drilling Fluid: Newtonian

Cement Patched in the Tube

Models

Cement: Herschel-Bulkley Drilling Fluid: Newtonian

Inlet Velocity =0.05 m/s Inlet Velocity =0.2 m/s **3D Flat Walls Well**

Conclusions

- A VOF model for gas bubble motion in cement was developed.
- The Newtonian and Herschel-Bulkley models was used for cement slurry.
- Simulations were presented to 2-D flat and rough wall as well as annulus well cement models.
- CFD could provide insight into the gas migration process.
- Further studies of the gas migration process is needed.

Future Works

- Model cement pastes as non-linear fluids exhibiting viscoelasticity, thixotropy, yield stress, shear-thinning effects (Tao et al. 2020, 2021)
- Include the reduction of pore pressure using empirical models
- Simulate the fluid migration as the pore pressure reduces
- Develop a rheological model including the pore pressure reduction
- Develop a constitutive law for cement paste solidification process

Thank You!!!

