Experimentally measuring threedimensional granular rotations.

Zackery A. Benson

Examples of granular materials

Asteroids and other ET objects can be modeled
 as granular material

- Collection of discrete particles that interact with a wide range of forces
- Inherently far from equilibrium
- Bulk properties depend heavily on material history

Ballast (bed of rocks) provides structural stability to railroad tracks

Rotations are needed for the complete study of particle dynamics

Rotational motion accounts for $1 / 2$ the total degrees of freedom

For dense systems, energy dissipation is dominated by frictional contacts instead of collisions

Collective rotations can emerge on multiple scales

N. V. Brilliantov et. al. PRL, 98 (2007) 128001

D. V. Stager et. al. PRL, 116 (2016) 254301

Our experimental system

Material: 20,000 acrylic beads ($n=1.49$)
Radius $=0.25 \mathrm{~cm}$
Fluid: Triton X100
Compression amplitude: 1\% ($\sim 0.15 \mathrm{~cm}$)
Packing fraction ≈ 0.6

Capturing 3D rotational motion during cyclic compression

Mid Cycle Motion

Mid Cycle Rotations

Material: 20,000 acrylic beads ($\mathrm{n}=1.49$)
Radius $=0.25 \mathrm{~cm}$
Fluid: Triton X100
Compression amplitude: $1 \%(\sim 0.15 \mathrm{~cm})$
Packing fraction ≈ 0.6

Tracking individual grains positions and orientations

Mid Cycle Motion

Two holes quantify all rotational degrees of freedom

30 July 2021

Application of variational auto encoders for image analysis

Encoder
Decoder

[^0]
VAE encoding handwritten digits in a 2D latent space

This region corresponds to the digit 1

[^1]
Position identification with VAE

Application of VAE colored by pixel intensity

Latent space rotates during different training runs, but the feature separation remains the same

Orientation extraction

LoG filter

Computing rotations

The rotations for the experiment are calculated by the Kabsch algorithm.

$$
C \rightarrow\left(\begin{array}{ll}
\hat{p}_{0} & \hat{q}_{0}
\end{array}\right) \cdot\binom{\hat{p}_{1}}{\hat{q}_{1}}
$$

2D projection of rotating grain

Singular value decomposition

$$
\begin{gathered}
C=U \Sigma V^{T} \\
d=\operatorname{sign}\left\{\operatorname{det}\left(V U^{T}\right)\right\} \\
R=V\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & d
\end{array}\right) U^{T}
\end{gathered}
$$

U and $V^{T} \rightarrow$ left and right singular vectors
$\Sigma \quad \rightarrow$ contains the singular values
$R \quad \rightarrow$ Rotation matrix

Computing contact point rotations

Relative deformation of the contact point

$$
\Delta \vec{U}=\left(\vec{v}_{1}-\vec{v}_{2}\right)+\left(\vec{\omega}_{1} \times \vec{d}_{12}-\vec{\omega}_{2} \times \vec{d}_{21}\right)
$$

Take the tangential component

$$
\Delta \vec{U}_{\mathrm{sld}}=\Delta \vec{S}-\left(\Delta \vec{S} \cdot \hat{d}_{12}\right) \hat{\mathrm{d}}_{12}
$$

Rolling displacement

$$
\begin{aligned}
& \Delta \vec{\omega}=\vec{\omega}_{1}-\vec{\omega}_{2} \\
& \Delta \overrightarrow{\mathrm{U}}_{\text {roll }}=\Delta \vec{\omega} \times \vec{d}_{12}
\end{aligned}
$$

$\omega_{i} \rightarrow$ angular velocity vector
$\vec{v}_{i} \rightarrow$ displacement vector
$\vec{d}_{i j} \rightarrow$ vector from center of i to the contact point

Compression protocol

17 images per full cycle taken at equal intervals

Spatial distribution of displacements at full compression

Types of motion penetrates at different lengths in the sample

Mean displacements within a cycle

Comparison with DEM simulations

Conclusion and Acknowledgements

Measured 3D rotations of granular spheres.
Implemented VAE to aid in grain identification.
Quantified sliding displacements during cyclic compression.
Found agreement between simulations and experiments in rotational displacement.

Acknowledgements

Wolfgang Losert Phillip Alvarez Samira Aghayee
Abby Bull
Lenny Campanello Sylvester Gates Rachel Lee

Nick Mennona
Kate O'Neill
Qixin Yang
Derek C. Richardson (UMD ASTR)
Anton Peshkov (U of Rochester, PHYS)
Nicole Yunger Halpern (Harvard University, PHYS)

Funding Sources NSF GRFP, NSF DMR

Contact:
zbenson@umd.edu

[^0]: https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

[^1]: https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

