CFD-DEM Simulation of Wet Particles Fluidization

<u>Leina Hua¹</u>, Qiushi Xu^{1,2}, Raffaella Ocone³, Ning Yang^{1,2*}

¹ Institute of Process Engineering, Chinese Academy of Sciences, ²University of Chinese Academy of Sciences, ³Heriot-Watt University

Corresponding: <u>nyang@ipe.ac.cn</u>

Contents

- **■** Research background
- A new evolution model for liquid bridge
- **CFD-DEM** simulation of one single bubble
- **■** Conclusion

Contents

- Research background
- A new evolution model for liquid bridge
- **CFD-DEM** simulation of one single bubble
- Conclusion

Wet particles exist widely in natural world and industrial applications

N. Mitarai and F. Nori (2006)

Wet and dry particles differ considerably in behavior

Liquid bridge evolution mode used widely in CFD-DEM

A complete lifecycle of a liquid bridge

Sphere impacting a plane covered with a thin liquid film

A hysteretic property:

A bridge forms when two objects come into contact, and the bridge continues to develop during their rebounding stage until its rupture at a critical separation distance between objects.

S. Antonyuk et al. (2009); Song et al. (2017)

Other cases for liquid bridge evolution mode

Liquid bridge condensed between two particles before contact

in a high humid environment

Liquid bridge condensed between an AFM tip and a surface with increasing relative humity

Liquid bridge between the asperities of two rough particles (before contact of two "smooth" particles)

typical particle

- Modeling
- When $h < h_{rup}$ or h_c , liquid bridge forms;
- When $h: h_{rup}/h_c \rightarrow 0 \rightarrow h_{min} \rightarrow 0 \rightarrow h_{rup}$, liquid bridge grows;
- When *h* > *h*_{rup}, liquid bridge breaks up;

Contents

- Research background
- A new evolution model for liquid bridge
- **CFD-DEM** simulation of one single bubble
- **■** Conclusion

Coalescence or Bounce? Film drainage model for bubbles

Experiments:

- The bubbles bounce several times due to a large approach velocity.
- The bubble coalescences when $v_n < v_{nc}$.

P.C. Duineveld, 1994; F. Suñol and R. González-Cinca, 2010;

Modeling:

■ Bubble coalescence efficiency is related to film drainage time and bubble contact time

$$\lambda(d_1, d_2) = \exp\left(-\frac{t_{drainage}}{t_{contact}}\right)$$

Question: Is there any other modes in a dynamic particulate system?

$$\lambda(d_1, d_2) = \exp\left[-\left(\frac{t_{drainage}}{t_{contact}}\right)^{-1}\right]$$

A new liquid bridge mode: Mode C

Mode A: controlled by h

Mode B: controlled by h

Mode C: controlled by h and v_n

Contents

- Research background
- A new evolution model for liquid bridge
- **CFD-DEM** simulation of one single bubble
- **■** Conclusion

Test system: One single bubble in a 3D gas-solid bed

■ Lab-scale 3D column: I.D. 190 mm, height 300 mm, initial height 200 mm; Central jet: 8.95 mm diameter; ■ Gas: air (0.37 L in 50 ms); Particles: Geldart D brown mustard seeds, 2D MRI image $\rho_s = 1080 \text{ kg/m}^3$, $d_p = 2.11 \pm 0.09 \text{ mm}$; silicone oil (contact angle < 30 degrees), Liquid: ρ_{l} = 910 and 990 kg/m³, μ_{l} = 5 and 100 mPas, γ = 20 mN/m; Liquid addition: 0.2 and 0.8 wt% (weight ratio); $U_0 U_{\text{jet}} U_0$ C. M. Boyce et al. (2019)

To measure the bubble properties including bubble center, volume, and aspect ratio (W_b / H_b)

Simulation setup in CFD-DEM

3D computational domain:

To produce **one** bubble:

Bed bottom area

CFD-DEM parameters:

Parameter	Value
Normal spring stiffness (k_n)	1000 N/m
Tangential/normal spring stiffness (k_t/k_n)	0.4
Tangential/normal damping coefficient (η_t/η_n)	0.5
Normal coefficient of restutition (e_{ss_dry})	0.7
Coefficient of friction (μ_{s_dry})	0.55
Reduced particle stiffness scaling (Ω)	0.01
CFD time step	$1.0 \times 10^{-5} \text{ s}$
Grid size in x, y, and z direction	$2.12 \ d_p$
Number of particles	861,125

2D **flood fill method** was used to extract bubble properties:

To determine particle sphericity and v_{nc} by defluidization curve

■ Dry particles to determine particle sphericity Ψ

$$m_i \frac{d\mathbf{v}_i}{dt} = m_i \mathbf{g} + \mathbf{F}_{ci} + \mathbf{F}_{di}$$
 drag force

$$\begin{aligned} \mathbf{F}_{di} &= -\nabla p_g(\mathbf{X}_i) V_p + \frac{\beta V_p}{\varepsilon_s} (\mathbf{u}_g(\mathbf{X}_i) - \mathbf{v}_i) \\ \beta &= (1 - \varphi_{gs}) \beta_{Wen-Yu-Ganser} + \varphi_{gs} \beta_{Ergun} \\ \beta_{Wen-Yu-Ganser} &= \frac{3}{4} \frac{\varepsilon_s \varepsilon_g \rho_g |\mathbf{u}_g - \mathbf{u}_s|}{d_m} C_{d0} \varepsilon_g^- 2.7 \\ \beta_{Ergun} &= \frac{180 \varepsilon_s^2 \mu_g}{|\mathbf{v}^2|^2 \varepsilon_g} + \frac{2\varepsilon_s \rho_g |\mathbf{u}_g - \mathbf{u}_s|}{|\mathbf{v}^2|^2 \varepsilon_g} \\ \varphi_{gs} &= \frac{\arctan[180 \times 2(\varepsilon_s - \varepsilon_{smf})]}{\pi} + 0.5 \\ C_{d0} &= \frac{24}{Re_s K_1} [1.0 + 0.1118 (Re_s K_1 K_2)^{0.6567}] + \frac{0.4305}{1 + \frac{3305}{Re_s K_1 K_2}} \\ K_1 &= (\frac{1}{3} \frac{d_n}{d_v} + \frac{2}{3} \overline{\psi}_{-}^{-1})^{-5})^{-1} - 2.25 \frac{d_v}{D} & \text{Mustard seeds} \\ K_2 &= 10^{1.8148(-101)} \underline{\psi}_{-}^{0.5743} \\ Re_s &= \frac{\varepsilon_g \rho_g d_v |\mathbf{u}_g - \mathbf{u}_s|}{\mu_g} \end{aligned}$$

Defluidization curve

(Bed pressure drop vs. U_a)

 U_g with a decreasing value

■ Wet particles to determine \mathbf{v}_{nc}

$$m_i \frac{d\mathbf{v}_i}{dt} = m_i \mathbf{g} + \mathbf{F}_{ci} + \mathbf{F}_{di} + \mathbf{F}_{bi}$$
 liquid bridge force

Liquid bridge force is calculated when $v_n < |v_{nc}|$ and $h < h_{rup}$

$$\frac{\mathbf{F}_{cap}}{\pi r_p \gamma} = [\exp(A\hat{h} + B) + C]\mathbf{n}$$

$$A = -1.1\hat{V}_l^{-0.53}$$

$$B = (-0.34 \ln \hat{V}_l - 0.96)\theta^2 - 0.019 \ln \hat{V}_l + 0.48$$

$$C = 0.0042 \ln \hat{V}_l + 0.078$$

Capillary force \mathbf{F}_{cap} is a function of h and V_{l} .

$$\mathbf{F}_{vis} = -\frac{3}{2} \frac{\pi \mu_l r_p^2}{h} X_V^2 \mathbf{v}_n$$

$$X_V = 1 - \left(1 + \frac{2V_l}{\pi r_p h^2}\right)^{-1/2}$$

Viscous force \mathbf{F}_{vis} is a function of h, V_l , μ_l and \mathbf{v}_n .

$$\hat{h}_{rup} = (0.62\theta + 0.99)\hat{V}_l^{0.34}$$

Defluidization curve simulation of wet particles: The optimal v_{nc}

 U_{mf} , U_{df} , U_{cf} are used to characterize defluidization curves of wet particles

Defluidization curve of wet particles: v_{nc} under other liquid conditions

Liquid condition	Optimal \mathbf{v}_{nc} (m/s)
$\Lambda = 0.2$ wt %, $\mu_l = 5$ mPas	$0 \sim 0.001$
$\Lambda = 0.2 \text{ wt } \%, \mu_l = 100 \text{ mPas}$	$0 \sim 0.01$
$\Lambda = 0.8$ wt %, $\mu_l = 5$ mPas	$0.1 \sim \infty$
$\Lambda = 0.8 \text{ wt } \%, \mu_l = 100 \text{ mPas}$	$0.05 \sim 0.1$

when v_{nc} increases:

- U_{mf} , U_{df} , and U_{cf} increase.
- the discrepancy among the velocities becomes significant.

17

The bubble properties in a dry bed

The bubble properties in a wet bed: $\Lambda = 0.8$ wt% and $\mu_I = 5$ mPa s

■ Must be rechecked by back gas velocity U_0

■ Be consistent with results from defluidization curve

Liquid condition	Optimal \mathbf{v}_{nc} (m/s)
$\Lambda = 0.2$ wt %, $\mu_l = 5$ mPas	$0 \sim 0.001$
$\Lambda = 0.2$ wt %, $\mu_l = 100$ mPas	$0 \sim 0.01$
$\Lambda = 0.8$ wt $\%$, $\mu_l = 5$ mPas	$0.1 \sim \infty$
$\Lambda = 0.8$ wt %, $\mu_l = 100$ mPas	$0.05 \sim 0.1$

Time: 0.20

Liquid bridge coordination number: Validation of mode A and mode B

The equation to describe liquid bridge coordination number: (A static system in experiments)

$$N_{coor} = N_{contact} + f(h/d_p)$$

M. M. Kohonen, et al. (2004): used an assumption of Mode A

$$N_{coor}$$
 = 6 and $N_{contact}$ = 3.3 for a loose-packed bed (ε_s = 0.57); N_{coor} = 6.5 and $N_{contact}$ = 4.3 for a dense-packed bed (ε_s = 0.62);

G. Mason and W. C. Clark (1967): used an assumption of Mode B

$$N_{coor}$$
 = 9 and 10 for a loose and dense packing bed, respectively; $N_{contact}$ = 7.6

The cause of bubble collapse phenomenon: Particle agglomerate

The vector of particle speed at OXY plane:

A summary of the optimal v_{nc} under liquid conditions

A short conclusion:

- Mode C improves the performance of CFD-DEM under high liquid loading and viscosity.
- v_{nc} increases markedly with liquid loading and mildly with viscosity, indicating the dominate role of liquid loading in a dense fluidization system.

Conclusion

- The new mode with an appropriate estimation of v_{nc} shows a better performance especially when liquid loading and viscosity are high.
- $All v_{nc}$ can only be accurately determined by CFD-DEM simulation of defluidization curve. Thus defluidization curve of wet particles should be measured. It is suggested that a complete defluidization curve is measured rather than only the minimum fluidization velocity.
- \blacksquare v_{nc} increases significantly with liquid loading and slightly with viscosity, indicating a dominant role of liquid loading in a dense system.

THANK YOU! Questions?