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Liang-Shih Fan, Principles of gas-solid flows (1999)
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Irregular shaped particles B

* Require to involve complicated geometrical
factors sphericity, flatness, elongation and
circularity, etc.

* Most force correlations are limited to simplified
or regular shaped particle

* Require heavy computation for the collision
* Neural network approach
» Interaction force: Drag, lifting, Torque

» Collision contact properties: Contact point,
norm, inter-penetration depth

Shiwei Zhao et al., Int J Numer Anal Methods Geomech., 43 (2019)
Vinay V. Mahajan et al., Chemical Engineering Science, 192 (2018) 3
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Interaction Force Model
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SH : Spherical Harmonic method

VAE : Variational Auto-Encoder

PR-DNS : Particle Resolved Direct Numerical Simulation

ANN : Artificial Neural Network 5
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Spherical Harmonic (SH) Method

Spherical harmonic functions
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Few shape factors
d : spherical descriptor, roughness
EI : elongation index
FI : flatness index

Randomness, C; = f;(d, X~U(0,1))

d=05FI=1,El=1
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Variational Auto-Encoder (VAE)

Voxel input

Deep CNN layers with ELUs

Latent vectors with 128 dimension

2,000 datasets to train, 400 datasets to validate
Less than 1% reconstruction error

For the DNS, new 5,200 particles were
generated (error < 1%)

Encoder
evaluation
input
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PR-DNS Development

+ Simplified Spheric Gas Kinetic Scheme (GKS) % +v-Vf = g
* Immersed boundary Method (IBM) / Direct Forcing
- Adaptive Mesh Refinement (AMR) f(0,8) ~ g(0,0) + 5, (g(~vét,t — &t) + g(0,1))

F=[f(0,0)vEdv, E = (1)

I rv-F=ow=(})

velocity Magnitude

L 04 g_{ﬁ’ l’f(u_v)zzcz
- 0, otherwise
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DNS to ANN

« 5,200 datasets in low Re regime (0.1~10)

« Show the typical Re-C, trend, C, and C, depend on d, C, depends on AR

* 1,000~4,000 datasets for training and 1,200 datasets for validation and evaluation

Latent vector t'.\
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400
ANN results 8 ]
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G.H. Ganser, Powder Technology. 77 (1993) 10
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ANN results
+ 3 particles (d =0, 0.25, 0.5)

* More accurate prediction on the lifting force and
torque coefficients.
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M. Zastawny, el al., International Journal of Multiphase Flow. 39 (2012)
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Collision Model
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Collision algorithms in CFD-DEM

« DEM method involves iterative calculations for particles
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Collision algorithms in CFD-DEM
« Att=t and forj particle,

Calculate N, kK — k+1
—>  “in or out” for kih <
vertex
N |
- in? [ Calqulate mean
point & norm

I |
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\ﬁﬁ

14



THE OHIO STATE UNIVERSITY Results

Non-spherical particles (&) + @)aya/e 4 (Zy2a = 1
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ANN model

» Correlate the relative position, rotational angle and .. 2
vertices to contact properties.

 Two ANN models for the detection and to z

properties. Z}i
X

Dim. 256 128 64 32 16

1 N
_Lﬂ Contact detection : True/False Hy(q)= -~ v - 1og(p(y)) + (1 = y,)) - log(1 = p(3,))

p —»%—»%—»%—»% { =1
X, s %—» Contact calculation : X, T, 5  MSE = %gm _Y,)?
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ANN results
80,000 datasets

* More accurate prediction compared to
Contact frequency

volume equivalent sphere 49.40% 33.50% 33.30% 41.90% 49.50% 59.80%
. \ ratio
* Rapid calculations

Case 1 2 3 4 5 6

Accuracy of the
_ 96.70% 96.20% 97.70% 96.80% 97.70% 97.50%
(a) detection model

1.00 7
Case 2
0.

Accuracy
. 76.80% 76.30% 83.30% 96.60% 91.50% 89.30%
assuming spheres

025 | SURRERII - : 25 L. MSEs from the
.00 WRB LR i T 0.005 0.008 0.0067 0.004 0.0016 0.0045

(b) non-spherical ContaCt m0de|

. equivalent sphere

Case 4 MSEs assuming

3 0.0653 0.0626 0.0802 0.0008 0.0204 0.0914
H spheres

Sphericity 0.92 0.8 0.84 0.98 0.91 0.74
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« This study provides the interaction force and collision models for the non-
spherical particles.

 In DEM, the NN based models can be implemented to obtain the interaction
forces and collision forces.

» Both models show high accuracy of prediction on the forces and collision
properties.

» The collision model can improve the computation efficiency.
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