Quantifying the Effects of Transient Heating Conditions on Microchannel Flow Boiling Instabilities

Todd A. Kingston

Center for Multiphase Flow Research and Education
Department of Mechanical Engineering
Iowa State University
Ames, Iowa 50011
kingston@iastate.edu

NETL Multiphase Flow Science Workshop August 5, 2021

Next-Generation Thermal Management

AESA Radar in a Fighter Aircraft

Sudhakar and Weibel, JEP, 2017

Sudhakar and Weibel, JEP, 2017

Junction/Chip (<10⁻³ m) Package/Case (10⁻² m) PCB/Heat Sink (10⁻² - 10⁻¹ m) Room/Ambient (>10⁻¹ m) Source 10000 kW/m² 1000 kW/m² 100 kW/m² 100 kW/m² 100 kW/m²

Sink

'Remote' Cooling

'Embedded' Two-Phase Cooling

Bar-Cohen, JNEM, 2013

Experimental Facility

Experimentally measured thermal time constant of the microchannel during single-phase flow: $\tau = 0.43$ s

- 500 μm-diameter borosilicate glass microchannel
- Constant or transient heating
 - ITO coating provides heat flux to channel via Joule heating
 - Solid-state switch enables heat flux switching during transient heating experiments
- Working fluid: Degassed HFE-7100
- High-frequency measurement of heat flux, wall temperature, pressure drop, and mass flux
- Synchronized high-speed flow visualizations enable time-resolved characterization

Selection of Transient Heating Conditions

Selected three heat fluxes which result in highly contrasting flow conditions under *constant* heating conditions:

- 15 kW/m²: single-phase flow
- 75 kW/m²: continuous two-phase flow
- 150 kW/m²: exceeds critical heat flux

Design of Experiments: Time-periodic Heat Flux Pulses

Low Heating Level [kW/m²]	High Heating Level [kW/m²]	Duty Cycle [%]	Heating Pulse Frequency, f [Hz]
15	75	50	0.1, 0.2, 0.5, 1, 2, 5 , 10, 15, 20, 25, 50, 100
15	150	50	0.8, 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, 100
75	150	25	0.8, 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, 100

Design of Experiments: Single Heat Flux Pulse

Initial Heat Flux [kW/m²]	Pulsed Heat Flux [kW/m²]	Pulse Durations [s]		
15	75	0 - 0.50*, 0.75, 1, 2, 4, 6, 8, 10		
75	15	0 - 0.50*, 0.75, 1, 2, 4, 6, 8, 10		
15	150	0 - 0.35*		
75	150	0 - 0.50*		
Increments of 0.05 c				

Increments of 0.05 s

Single Heat Flux Pulse (10 s) from 15 kW/m² to 75 kW/m²

- Explosive-like growth at the onset of boiling due to the rapid-bubble-growth instability
- Dynamic response to boiling resembles that of an underdamped mass-springdamper system subjected to a unit step input

Single Heat Flux Pulse (10 s) from 15 kW/m² to 75 kW/m²

During the transition, the wall temperature overshoots the eventual steady wall temperature by approximately 20 °C

Time-periodic Heat Flux Pulses: 15/75 kW/m² at 5 Hz

- Flow regime transitions and pressure drop oscillations occurring simultaneously
- Pressure drop oscillations induced at exactly the heating pulse frequency (5 Hz)

Conclusions

- Single heat flux pulse
 - Step up/down in heat flux that induces/ceases boiling causes the wall temperature to temporarily over/under-shoot the eventual steady wall temperature
 - At onset of boiling, dynamic response resembles that of an underdamped massspring-damper system subjected to a unit step input
- Time-periodic heat flux pulses
 - For f > 10 Hz: transient heat flux is attenuated and effectively becomes a constant heat flux
 - For 1 Hz < f < 10 Hz: flow boiling is heavily coupled to transient heating conditions
 - For f < 1 Hz: acts as a step change between different heat flux levels
- Next-generation cooling strategies will need to consider increased coupling between device operation and cooling performance

Acknowledgments

- This research was sponsored by the Naval Engineering Education Consortium (NEEC), with support of Naval Surface Warfare Center (NSWC) Crane Division in Crane, Indiana
- Special thanks to Dr. Brian D. Olson (NSWC Crane Division) for technical discussion of this work

For additional information, please refer to our recent journal articles:

Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier.com/locate/hmt

flux pulses

Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

Time-resolved characterization of microchannel flow boiling during

transient heating: Part 2 – Dynamic response to time-periodic heat

Time-resolved characterization of microchannel flow boiling during transient heating: Part 1 – Dynamic response to a single heat flux pulse

Todd A. Kingston¹, Justin A. Weibel*, Suresh V. Garimella^{2,*}

Todd A. Kingston¹, Justin A. Weibel*, Suresh V. Garimella^{2,*}

